Python Handbook

2

A Comprehensive
Guide

Attila Asghari
2025

attilaasghari@gmail.com

python-handbook

Python Handbook: A Comprehensive Guide
By Attila Asghari

2025

Purpose of This Handbook

This handbook is designed to help learners understand Python efficiently, without
overwhelming explanations. It serves as a fast reference guide that focuses on essential
concepts and syntax. Unlike traditional programming books that dive deep into theory, this
handbook aims to be a practical, no-nonsense guide that lets you get straight to coding.

Who Is This Handbook For?
This handbook is for:

Beginners who are just starting with Python.

Intermediate learners who want to reinforce their knowledge.

Students looking for a quick reference while learning Python in school or university.
Self-learners who prefer an efficient and structured way to grasp Python concepts.

How to Use This Handbook

One of the key purposes of this book is flexibility. You don’t have to follow it in order—you
can jump between topics based on your needs. Each section is designed to be self-
contained so that you can quickly find what you’re looking for without unnecessary
distractions.

Acknowledgments

Writing this handbook has been an incredible journey, and | couldn’t have done it without the
support and encouragement of the people around me. I'd like to take a moment to express
my gratitude to those who made this book possible.

First and foremost, | want to thank my amazing girlfriend, Amanda (Asal) Karimi, for her
unwavering support, patience, and encouragement throughout this process. Her belief in me
kept me motivated, even when the challenges seemed overwhelming. Thank you for being
my inspiration and my rock.

Finally, thank you to the readers of this book. Your curiosity and eagerness to learn are what
drive me to share my knowledge. | hope this book helps you on your Python journey and
inspires you to create amazing things.

About the Author

My name is Attila Asghari, and | am a final-year Computer Engineering student. | have a
deep interest in Artificial Intelligence (Al), Machine Learning (ML), Embedded Systems, and
Data Science. While learning Data Science, | realized that | needed a resource to quickly
grasp Python without unnecessary explanations—something like a structured cheat sheet.
Since | couldn’t find exactly what | was looking for, | decided to create this handbook.

Website: hitps://attila.vitren.ir

Website: hitps://ata.vitren.ir

Email: attilaasghari@gmail.com

Prerequisites

This book assumes no prior programming experience. However, familiarity with basic
computer operations (e.g., installing software, navigating files) will be helpful. To get started,
you'll need:

A computer with Python installed (Python 3.x is recommended).
A text editor or IDE (Integrated Development Environment) for writing and running
Python code. Popular options include:

Jupyter Notebook (used to write this book)

VS Code

PyCharm

IDLE (comes with Python)

If you're new to Python, don't worry! The first section of the book will guide you through the
basics step by step.

Tools and Setup

To follow along with the examples in this book, you'll need to set up your Python
environment. Here's how to get started:

Install Python:
Download the latest version of Python from the official website:
https://www.python.org/downloads/

Follow the installation instructions for your operating system.
Install Jupyter Notebook (optional but recommended):
Open a terminal or command prompt and run:

pip install notebook

Launch Jupyter Notebook by running:

https://attila.vitren.ir/
https://ata.vitren.ir/
https://www.python.org/downloads/

jupyter-notebook

Install a Text Editor or IDE:
If you prefer a lightweight editor, install VS Code or Sublime Text.
If you want a full-featured IDE, install PyCharm.

Verify Your Setup:
Open a terminal or command prompt and type:

python --version

You should see the installed Python version (e.g., Python 3.10.0).

Once your environment is set up, you're ready to start coding!

Links to IDE and Text Editors

Name Link

Visual Studio Code htips://code.visualstudio.com/

Sublime Text https://www.sublimetext.com/
PyCharm https://www.jetbrains.com/pycharm/
Jupyter https://jupyter.org/

Table of Contents
Beginner Python

Introduction

Variables & Data Types
Working With Strings
Working With Numbers
Getting Input From Users
Lists

List Functions

Tuples

Functions

Return Statement

If Statements

If Statements & Comparisons
Dictionaries

While Loop

Building a Guessing Game
For Loops

https://code.visualstudio.com/
https://www.sublimetext.com/
https://www.jetbrains.com/pycharm/
https://jupyter.org/

Exponent Function

2D Lists & Nested Loops
Comments

Try / Except

Reading Files

Writing to Files

Modules & Pip

Classes & Objects
Object Functions

Inheritance

Intermediate Python

Intro

Lists

Tuples

Dictionaries

Sets

Strings

Collections

ltertools

Lambda Functions
Exceptions and Errors
Logging

JSON

Random Numbers
Decorators

Generators

Threading vs Multiprocessing
Multithreading
Multiprocessing

Function Arguments

The Asterisk (*) Operator
Shallow vs Deep Copying
Context Managers

1. Introduction to Python

Python is a high-level, interpreted programming language known for its simplicity and
readability. It was created by Guido van Rossum and first released in 1991. Python is widely

used in various fields, including web development, data science, artificial intelligence,
automation, and more.

Why Learn Python?

Easy to Learn: Python’s syntax is straightforward and resembles English, making it
beginner-friendly.

Versatile: It can be used for web development, data analysis, machine learning,
automation, and more.

Large Community: Python has a vast community of developers, so finding help or
libraries is easy.

Cross-Platform: Python runs on Windows, macOS, Linux, and other platforms.

Installing Python

Download Python: Visit the official Python website (python.org) and download the latest
version for your operating system.

Install Python: Follow the installation instructions. Make sure to check the box that says
"Add Python to PATH" during installation.

Verify Installation: Open a terminal or command prompt and type python --version
or python3 —--version . If Python is installed correctly, it will display the version number.

Writing Your First Python Program

Python programs are written in .py files. You can use any text editor or an Integrated
Development Environment (IDE) like PyCharm, VS Code, or Jupyter Notebook.

Let’'s write a simple program:

print("Hello, World!")

Hello, World!

Explanation:
print() is a built-in function that outputs text to the console.
"Hello, World!" is a string, which is a sequence of characters enclosed in
quotes.

Running a Python Program

Save the file with a .py extension, e.g., hello.py .
Open a terminal or command prompt.

Navigate to the folder where the file is saved.

https://www.python.org/

Run the program by typing python hello.py or python3 hello.py .

Python Syntax Basics

Indentation: Python uses indentation (spaces or tabs) to define blocks of code. Unlike
other languages, indentation is mandatory in Python.

if 5 > 2:
print("Five is greater than two!")

Five is greater than two!

Case Sensitivity: Python is case-sensitive, so myVariable and myvariable are

treated as different names.
Comments: Use # for single-line comments and ''' or """ for multi-line comments.

This is a
multi-line comment

"\nThis is a\nmulti-line comment\n'

Python Modes

Interactive Mode: You can run Python code directly in the terminal by typing python or
python3 . This is useful for testing small snippets of code.

$ python
>>> print("Hello, Python!")

Hello, Python!

Script Mode: Save your code ina .py file and execute it as a script.

2. Variables & Data Types

What Are Variables?

A variable is a named location in memory used to store data. Think of it as a container that
holds a value. In Python, you don’t need to declare the type of a variable explicitly; Python

automatically infers the type based on the value assigned.

Rules for Naming Variables

Variable names must start with a letter (a-z, A-Z) or an underscore (_).
The rest of the name can contain letters, numbers, or underscores.
Variable names are case-sensitive (myvar and myvar are different).

Avoid using Python keywords (e.g., if , else, for, while, etc.) as variable names.

Assigning Values to Variables

Use the = operator to assign a value to a variable.

x = 10
name = "Alice"
is_student = True

Data Types in Python
Python has several built-in data types. The most common ones are:

Integers (int): Whole numbers, positive or negative.
age = 25
Floats (float): Decimal numbers.
height = 5.9
Strings (str): Sequences of characters enclosed in single or double quotes.

name = "Alice"
greeting = 'Hello, World!'

Booleans (bool): Represents True or False.

True

is_student
is_working

False

Lists (1ist): Ordered, mutable collections of items.

fruits = ["apple", "banana", "cherry"]

Tuples (tuple): Ordered, immutable collections of items.

coordinates = (10.0, 20.0)

Dictionaries (dict): Unordered collections of key-value pairs.
person = {"name": "Alice", "age": 25}

Sets (set): Unordered collections of unique items.

unique_numbers = {1, 2, 3, u}

Dynamic Typing

Python is dynamically typed, meaning you don’t need to declare the type of a variable. The
type is determined at runtime based on the value assigned.

10
"Hello"

Checking Data Types

You can use the type() function to check the data type of a variable.

x =10
print((x))

y = "Python"

print((y))

<class 'int'>
<class 'str'>
Type Conversion

You can convert one data type to another using built-in functions like int() , float(),
str() , etc.

x = 10

y = (x)
print(Cy)

z = (x)

print(z)

10.0
10

Variable Naming Conventions

Use descriptive names (e.g., user_age instead of x).
Use lowercase letters and underscores for variable names (snake_case).
Avoid single-letter names unless they’re used in a small scope (e.g., loop counters).

Example Program

name = "Alice"
age = 25
height = 5.9

is_student = True

print("Name:", name, (name))

print("Age:", age, (age))

print("Height:", height, (height))

print("Is Student:", is_student, (is_student))

Name: Alice <class 'str'>

Age: 25 <class 'int'>

Height: 5.9 <class 'float'>

Is Student: True <class 'bool'>

3. Working With Strings

A string is a sequence of characters enclosed in single (') or double (") quotes. Strings
are one of the most commonly used data types in Python, and Python provides many built-in
methods to work with them.

Creating Strings

You can create strings using single or double quotes:

stringl = "Hello, World!"
string2 = 'Python is fun!'

If your string contains a single quote, use double quotes, and vice versa:

string3 = "It's a beautiful day."

stringd = 'He said, "Python is awesome!"'
For multi-line strings, use triple quotes (''' or """):
multi_line_string = """This is a

multi-line
string."""

String Operations

Concatenation: Combine strings using the + operator.

first_name = "Alice"
last_name = "Smith"
full_name = first_name + " " + last_name

print(full_name)

Alice Smith

Repetition: Repeat a string using the * operator.

laugh = "Ha"
print(laugh * 3)

HaHaHa

Length: Use the 1en() function to get the length of a string.

text = "Python"
print(len(text))

Indexing: Access individual characters in a string using their index. Python uses zero-
based indexing.

text = "Python"
print(text[0])
print(text[3])

Negative indexing starts from the end:

print(text[-1])
print(text[-2])

Slicing: Extract a substring using slicing. The syntax is [start:end:step] .

text = "Python Programming"
print(text[0:6])
print(text[7:18])
print(text[:6])
print(text[7:1)
print(text[::2])

Python
Programming
Python
Programming
Pto rgamn

String Methods

Python provides many built-in methods to manipulate strings. Here are some commonly
used ones:

upper() : Converts the string to uppercase.

text = "Python"
print(text.upper())

PYTHON

lower() : Converts the string to lowercase.

text = "Python"
print(text.lower())

python

strip() : Removes leading and trailing whitespace.

text = " Python "
print(text.strip())

Python

replace() : Replaces a substring with another substring.

text = "Hello, World!"
print(text.replace("World", "Python"))

Hello, Python!

split() : Splits the string into a list of substrings based on a delimiter.

text = "Python is fun"
print(text.split(" "))

['Python', 'is', 'fun']

find() : Returns the index of the first occurrence of a substring. Returns -1 if not
found.

text = "Python is fun"
print(text.find("is"))

count() : Counts the number of occurrences of a substring.

text = "Python is fun and Python is easy"
print(text.count("Python"))

startswith() and endswith() : Checks if a string starts or ends with a specific
substring.

text = "Python is fun"
print(text.startswith("Python"))
print(text.endswith("fun"))

True
True

String Formatting

Using f-strings (Python 3.6+): Embed expressions inside string literals.

name = "Alice"
age = 25
print(f"My name is {name} and I am {age} years old.")

My name is Alice and I am 25 years old.

Using format() : Insert values into placeholders {} .

name = "Alice"
age = 25
print("My name is {} and I am {} years old.". (name, age))

My name is Alice and I am 25 years old.

Using % (older style):

name = "Alice"
age = 25

print("My name is %s and I am %d years old." % (name, age))

My name is Alice and I am 25 years old.

Escape Characters

Escape characters are used to include special characters in strings:

\n : Newline

\t : Tab

\\ : Backslash

\" : Double quote
\' : Single quote

Example:

print("Hello, \nWorld!")

Hello,
World!

Example Program

text = "Python is fun!"

print("Length:", (text))
print("First character:", text[0])
print("Last character:", text[-1])
print("Substring:", text[0:6])

print("Uppercase:", text.upper())
print("Lowercase:", text.lower())
print("Replace 'fun' with 'awesome':", text.replace("fun", "awesome"))

name = "Alice"

age = 25
print(f"My name is {name} and I am {age} years old.")

Length: 14

First character: P

Last character: !

Substring: Python

Uppercase: PYTHON IS FUN!

Lowercase: python is fun!

Replace 'fun' with 'awesome': Python is awesome!
My name is Alice and I am 25 years old.

4. Working With Numbers

Python supports various types of numbers, including integers, floats, and complex numbers.
In this section, we’ll focus on integers and floats, which are the most commonly used
numeric types.

Types of Numbers

Integers (int): Whole numbers, positive or negative, without decimals.

10
y = -5

Floats (float): Numbers with decimal points.

pi = 3.14
temperature = -10.5

Complex Numbers: Numbers with a real and imaginary part (e.g., 3 + 4j). We won’t
cover these in detail here.

Basic Arithmetic Operations

Python supports the following arithmetic operations:

Addition (+)
Subtraction (-)

Multiplication (=)
Division (/)

Floor Division (//)
Modulus (%)

Exponentiation (**)

a =10

b=3
print(a + b)
print(a - b)
print(a * b)

print(a / b)
print(Ca // b)

print(a % b)
print(a ** b)

13

7

30
3.3333333333333335
3

1

1000

Order of Operations (PEMDAS/BODMAS)

Python follows the standard mathematical order of operations:
4. Parentheses

5. Exponents

6. Multiplication and Division (from left to right)

7. Addition and Subtraction (from left to right)

Example:

result = 10 + 3 * 2 %% 2
print(result)

22

You can use parentheses to change the order of operations:

result = (10 + 3) * 2 *x 2
print(result)

52

Type Conversion Between Numbers

You can convert between integers and floats using the int() and float() functions:

10
3.14

< X
1l

print(int(Cy))

print((x))

10.0

Common Math Functions

Python provides a built-in math module for advanced mathematical operations. To use it,
you need to import the module:

import math

Here are some commonly used functions:

math.sqrt() : Square root.

print(math.sqrt(16))

4.o

math.pow() : Exponentiation.

print(math. 2, 3))

8.0

math.floor() : Rounds a number down to the nearest integer.

print(math.floor(3.7))

math.ceil() : Rounds a number up to the nearest integer.

print(math.ceil(3.2))

math.fabs() : Absolute value.

print(math.fabs(-10))

10.0

math.pi and math.e : Constants for mand e.

print(math.pi)
print(math.e)

3.141592653589793
2.718281828459045

Handling Large Numbers

Python can handle very large integers without any issues:

large_number = 123456789012345678901234567890
print(large_number)

123456789012345678901234567890
For very large floats, you can use scientific notation:

scientific_number = 1.23e6 # 1.23 % 10"6
print(scientific_number) # Output: 1230000.0

1230000.0

Example Program

Working with Numbers
a =10
b=23

Arithmetic operations
print("Addition:", a + b)
print("Subtraction:", a - b)
print("Multiplication:", a * b)
print("Division:", a / b)
print("Floor Division:", a // b)
print("Modulus:", a % b)
print("Exponentiation:", a ** b)

Order of operations
result = (a + b) * 2 *x 2
print("Result of (a + b) * 2 ** 2:" result)

Type conversion

x = 3.14

print("Convert float to int:", int(x))
print("Convert int to float:", float(a))

Math module

import math

print("Square root of 16:", math.sqrt(16))

print("2 raised to the power of 3:", math.pow(2, 3))
print("Floor of 3.7:", math.floor(3.7))
print("Ceiling of 3.2:", math.ceil(3.2))
print("Absolute value of -10:", math.fabs(-10))
print("Value of pi:", math.pi)

Addition: 13

Subtraction: 7

Multiplication: 30

Division: 3.3333333333333335
Floor Division: 3

Modulus: 1

Exponentiation: 1000

Result of (a + b) * 2 *x 2: 52
Convert float to int: 3
Convert int to float: 10.0
Square root of 16: 4.0

2 raised to the power of 3: 8.0
Floor of 3.7: 3

Ceiling of 3.2: 4

Absolute value of -10: 10.0
Value of pi: 3.141592653589793

5. Getting Input From Users

In Python, you can interact with users by taking input from them using the input() function.
This allows your program to dynamically respond to user-provided data.

The input() Function

The input() function reads a line of text from the user and returns it as a string. You can
optionally provide a prompt to guide the user.

Syntax:
(prompt)

prompt : A string that is displayed to the user before they enter their input (optional).

Example:

name = ("Enter your name: ")
print("Hello,", name)

Enter your name: Attila

Hello, Attila

When you run this program, it will display "Enter your name: " and wait for the user to
type something. After the user presses Enter, the input is stored in the variable name .

Important Notes About input()

Input is Always a String: The input() function always returns the user’s input as a
string, even if the user enters a number.

age = ("Enter your age: ")
print((age))

Enter your age: 23

<class 'str'>

Converting Input to Other Data Types: If you need the input as a number (e.g., integer
or float), you must explicitly convert it using int() or float() .

age = (("Enter your age: "))
print((age))

Enter your age: 23

<class 'int'>

Be careful when converting input, as invalid input (e.g., entering text when a number is
expected) will cause an error. We'll cover error handling later.

Example: Simple Calculator

Let’s create a simple program that takes two numbers from the user and performs basic
arithmetic operations:

numl = (("Enter the first number: "))

num2 = (("Enter the second number: "))

print("Addition:", numl + num2)
print("Subtraction:", numl - num2)
print("Multiplication:", numl * num2)
print("Division:", numl / num2)

Enter the first number: 19
Enter the second number: 91

Addition: 110.0

Subtraction: -72.0
Multiplication: 1729.0
Division: 0.2087912087912088

Handling Multiple Inputs

If you want the user to enter multiple values at once, you can use the split() method to
separate the input into a list of strings. Then, convert them to the desired data type.

Example:
values = ("Enter two numbers separated by a space: ").split()
numl = (values[0])
num2 = (values[1])
print("Sum:", numl + num2)

Enter two numbers separated by a space: 10 20

Sum: 30.0

If the user enters 10 20, the program will output Sum: 30 .

Example: User Registration

Here’s a program that collects user information and displays it back:

name = ("Enter your name: ")
age = (("Enter your age: "))
email = ("Enter your email: ")

print("\nUser Details:")
print(f"Name: {name}")
print(f"Age: {age}")
print(f"Email: {email}")

Enter your name: attila
Enter your age: 23
Enter your email: attilaasghari@gmail.com

User Details:

Name: attila

Age: 23

Email: attilaasghari@gmail.com

Error Handling for User Input

When converting user input to numbers, invalid input (e.g., entering text instead of a
number) will cause a ValueError . We'll cover error handling in detail later, but here’s a
basic example using a try-except block:

try:
age = (("Enter your age: "))
print("Your age is:", age)
except ValueError:
print("Invalid input! Please enter a valid number.")

Enter your age: hello

Invalid input! Please enter a valid number.

Example Program

Here’s a complete example that combines everything we’ve learned:

name = ("Enter your name: ")
age = (("Enter your age: "))
height = (("Enter your height in meters: "))

print("\nUser Profile:")
print(f"Name: {name}")
print(f"Age: {age}")
print(f"Height: {height} meters")

birth_year = 2023 - age
print(f"You were born in {birth_year}.")

Enter your name: attila
Enter your age: 23
Enter your height in meters: 1.85

User Profile:

Name: attila

Age: 23

Height: 1.85 meters
You were born in 2000.

6. Lists

A list is a versatile and widely used data structure in Python. It is an ordered, mutable
(changeable) collection of items. Lists can store elements of different data types, including
numbers, strings, and even other lists.

Creating Lists
Lists are created by enclosing elements in square brackets [], separated by commas.

Syntax:
my_list = [elementl, element2, element3]

Examples:

numbers = [1, 2, 3, 4, 5]

fruits = ["apple", "banana", "cherry"]

mixed_list = [1, "apple", 3.14, Truel

matrix = [[1, 2, 3], [4, 5, 61, [7, 8, 9]1]

Accessing List Elements

You can access elements in a list using their index. Python uses zero-based indexing,
meaning the first element has an index of 0.

Syntax:

my_list[index]

Examples:
fruits = ["apple", "banana", "cherry"]
print(fruits[0])
print(fruits[1])
print(fruits[2])
apple
banana
cherry

Negative Indexing: You can also use negative indices to access elements from the end
of the list.

print(fruits[-1])
print(fruits[-2])

cherry
banana

Slicing: You can extract a sublist using slicing. The syntax is [start:end:step] .

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]

print(numbers[2:5])
print(numbers[:4])

print(numbers[5:])

print(numbers[::2])

[3, 4, 5]

[1, 2, 3, 4]
[6, 7, 8, 9]
[1, 3, 5, 7, 9]

Modifying Lists
Lists are mutable, meaning you can change their elements after creation.

Updating an Element:

fruits = ["apple", "banana", "cherry"]
fruits[1] = "blueberry"
print(fruits)

['apple', 'blueberry', 'cherry']

Adding Elements:
append() : Adds an element to the end of the list.

fruits.append("orange")
print(fruits)

['apple', 'blueberry', 'cherry', 'orange'l]

insert() : Inserts an element at a specific index.

fruits.insert(1l, "mango")
print(fruits)

['apple', 'mango', 'blueberry', 'cherry', 'orange']

Removing Elements:
remove() : Removes the first occurrence of a specific value.

fruits.remove("blueberry")
print(fruits)

['apple', 'mango', 'cherry', 'orange']

pop() : Removes and returns the element at a specific index (or the last element if no
index is provided).

removed_fruit = fruits.pop(l)
print(removed_fruit)
print(fruits)

mango
['apple', 'cherry', 'orange'l]

del : Deletes an element or a slice of elements.

del fruits[o]
print(fruits)

['cherry', 'orange']

Clearing the List:
clear() : Removes all elements from the list.

fruits.clear()
print(fruits)

[]

List Operations

Concatenation: Combine two lists using the + operator.

listl = [1, 2, 3]

list2 = [4, 5, 6]
combined = listl + list2
print(combined)

[1, 2, 3, 4, 5, 6]

Repetition: Repeat a list using the * operator.

repeated = [1, 2] * 3
print(repeated)

[1, 2, 1, 2, 1, 2]

Length: Use the 1en() function to get the number of elements in a list.

numbers = [1, 2, 3, 4, 5]
print(len(numbers))

Membership: Check if an element exists in a list using the in keyword.

fruits = ["apple", "banana", "cherry"]
print("banana" in fruits)
print("mango" in fruits)

True
False

List Methods

Here are some commonly used list methods:

sort() : Sorts the list in ascending order (or alphabetically for strings).

numbers = [3, 1, 4, 1, 5, 9]
numbers.sort()
print(numbers)

[1, 1, 3, 4, 5, 9]
reverse() : Reverses the order of the list.

numbers.reverse()
print(numbers)

[9, 5, 4, 3, 1, 1]
copy() : Returns a shallow copy of the list.

new_numbers = numbers.copy()
print(new_numbers)

[9, 5 4, 3, 1, 1]
index() : Returns the index of the first occurrence of a value.

print(numbers.index(4))

count() : Returns the number of occurrences of a value.

print(numbers.count(1))

Example Program

fruits = ["apple", "banana", "cherry"]

print("First fruit:", fruits[0])
print("Last fruit:", fruits[-1])

fruits.append("orange")
fruits.insert(1, "mango")
fruits.remove("banana")
removed_fruit = fruits.pop(2)

print("Fruits:", fruits)
print("Number of fruits:", (fruits))
print("Is 'apple' in the list?", "apple" in fruits)

fruits.sort()

print("Sorted fruits:", fruits)
fruits.reverse()

print("Reversed fruits:", fruits)

First fruit: apple

Last fruit: cherry

Fruits: ['apple', 'mango', 'orange'l]

Number of fruits: 3

Is 'apple' in the list? True

Sorted fruits: ['apple', 'mango', 'orange']
Reversed fruits: ['orange', 'mango', 'apple'l]

7. List Functions

Python provides a variety of built-in functions and methods to work with lists. These functions
allow you to manipulate, analyze, and transform lists efficiently. In this section, we’ll explore
some of the most commonly used list functions and methods.

Common List Functions

len() : Returns the number of elements in a list.

numbers = [1, 2, 3, 4, 5]
print(len(numbers))

max() : Returns the largest element in a list.

print(max(numbers))

min() : Returns the smallest element in a list.

print(min(Cnumbers))

sum() : Returns the sum of all elements in a list (only for numeric lists).

print(sumCnumbers))

15

sorted() : Returns a new sorted list without modifying the original list.

unsorted = [3, 1, 4, 1, 5, 9]
sorted_list = (unsorted)
print(sorted_list)
print(unsorted)

[1, 1, 3, 4, 5, 9]

[3, 1, 4, 1, 5, 9]

any() : Returns True if at least one element in the listis True (or truthy).

boolean_list = [False, True, False]
print(any(boolean_1list))

True

all() : Returns True if all elements in the list are True (or truthy).

print(all(boolean_list))

False

Common List Methods

append() : Adds an element to the end of the list.

fruits = ["apple", "banana"]
fruits.append("cherry")
print(fruits)

['apple', 'banana', 'cherry'l]

extend() : Adds all elements of an iterable (e.g., list, tuple) to the end of the list.

fruits.extend(["orange", "mango"])
print(fruits)
['apple', 'banana', 'cherry', ‘'orange', 'mango']

insert() : Inserts an element at a specific index.

fruits.insert(1, "blueberry")

print(fruits)

['apple', 'blueberry', 'banana', 'cherry', 'orange', 'mango']

remove() : Removes the first occurrence of a specific value.

fruits.remove("banana")

print(fruits)

['apple', 'blueberry', 'cherry', 'orange', 'mango']

pop() : Removes and returns the element at a specific index (or the last element if no
index is provided).

removed_fruit = fruits.pop(2)
print(removed_fruit)

print(fruits)
cherry
['apple', 'blueberry', 'orange', 'mango']

clear() : Removes all elements from the list.

fruits.clear()
print(fruits)

[]

index() : Returns the index of the first occurrence of a value.

numbers = [10, 20, 30, 20, u40]
print(numbers.index(20))

count() : Returns the number of occurrences of a value.

print(numbers.count(20))

sort() : Sorts the list in place (modifies the original list).

numbers.sort()
print(numbers)

[10, 20, 20, 30, 40]

You can also sort in descending order:

numbers.sort(reverse=True)
print(numbers)

[ue, 30, 20, 20, 10]
reverse() : Reverses the order of the list in place.

numbers.reverse()
print(numbers)

[16, 20, 20, 30, 40]
copy() : Returns a shallow copy of the list.

new_numbers = numbers.copy()
print(new_numbers)

[10, 20, 20, 30, 40]

List Comprehensions

List comprehensions provide a concise way to create lists. They are often used to apply an
operation to each element in a list or to filter elements.

Syntax:
[expression for item in iterable if condition]

Examples:
19. Create a list of squares:

squares = [x ** 2 for x in (1, 6)1]
print(squares)

[1, 4, 9, 16, 25]

Filter even numbers:

even_numbers = [x for x in (10) if x % 2 == 0]
print(even_numbers)

[0, 2, 4, 6, 8]
Convert strings to uppercase:

fruits = ["apple", "banana", "cherry"]
uppercase_fruits = [fruit.upper() for fruit in fruits]
print(uppercase_fruits)

['APPLE', 'BANANA', 'CHERRY']

Example Program

numbers = [3, 1, 4, 1, 5, 9]

print("Length:", (numbers))
print("Max:", Cnumbers))
print("Min:", (numbers))
print("Sum:", (numbers))
print("Sorted:", (numbers))

numbers .append(2)
print("After append:", numbers)

numbers .extend([7, 81)
print("After extend:", numbers)

numbers.insert(2, 10)
print("After insert:", numbers)

numbers .remove(1)
print("After remove:", numbers)

popped = numbers.pop(3)
print("Popped element:", popped)
print("After pop:", numbers)

print("Index of 5:", numbers.index(5))

print("Count of 1:", numbers.count(1))

numbers.sort()
print("Sorted list:", numbers)

numbers.reverse()
print("Reversed list:", numbers)

squares = [x ** 2 for x in numbers]

print("Squares:", squares)

Length: 6

Max: 9

Min: 1

Sum: 23

Sorted: [1, 1, 3, 4, 5, 9]

After append: [3, 1, 4, 1, 5, 9, 2]

After extend: [3, 1, 4, 1, 5, 9, 2, 7, 8]
After insert: [3, 1, 10, 4, 1, 5, 9, 2, 7, 8]
After remove: [3, 10, 4, 1, 5, 9, 2, 7, 8]

Popped element: 1

After pop: [3, 10, 4, 5, 9, 2, 7, 8]
Index of 5: 3

Count of 1: 0

Sorted list: [2, 3, 4, 5, 7, 8, 9, 10]
Reversed list: [10, 9, 8, 7, 5, 4, 3, 2]
Squares: [100, 81, 64, 49, 25, 16, 9, u]

8. Tuples

A tuple is an ordered, immutable (unchangeable) collection of elements. Tuples are similar
to lists, but unlike lists, once a tuple is created, its elements cannot be modified, added, or

removed. Tuples are often used for fixed data that shouldn’t change, such as coordinates,

dates, or configurations.

Creating Tuples

Tuples are created by enclosing elements in parentheses () , separated by commas. If a
tuple has only one element, you must include a trailing comma to distinguish it from a regular
value.

Syntax:

my_tuple = (elementl, element2, element3)

Examples:

numbers = (1, 2, 3, 4, 5)

fruits = ("apple", "banana", "cherry")

mixed_tuple = (1, "apple", 3.14, True)

single_element = (42,)
Without the trailing comma, Python will treat it as a regular value:

not_a_tuple = (42)

Accessing Tuple Elements
Like lists, tuples support indexing and slicing to access elements.

Indexing: Access elements using their index (zero-based).

fruits = ("apple", "banana", "cherry")
print(fruits[0])
print(fruits[2])

apple
cherry

Negative Indexing: Access elements from the end of the tuple.

print(fruits[-1])
print(fruits[-2])

cherry
banana

Slicing: Extract a subtuple using slicing.

numbers = (1, 2, 3, 4, 5, 6, 7, 8, 9)
print(numbers[2:5])
print(numbers[:4])

print(numbers[5:])

print(numbers[::2])

(3, 4, 5)

(1, 2, 3, B
(6, 7, 8, 9
(1, 3, 5,7, 9

Tuples Are Immutable

Unlike lists, tuples cannot be modified after creation. This means you cannot:

Add or remove elements.
Change existing elements.

Example:

fruits = ("apple", "banana", "cherry")

Tuple Operations

Concatenation: Combine two tuples using the + operator.

tuplel = (1, 2, 3)

tuple2 = (4, 5, 6)
combined = tuplel + tuple2
print(combined)

(1, 2, 3, 4, 5, 6)

Repetition: Repeat a tuple using the * operator.

repeated = (1, 2) = 3

print(repeated)

(1, 2,1, 2,1, 2)
Membership: Check if an element exists in a tuple using the in keyword.

fruits = ("apple", "banana", "cherry")
print("banana" in fruits)
print("mango" in fruits)

True
False

Length: Use the len() function to get the number of elements in a tuple.

print(len(fruits))

Tuple Methods

Since tuples are immutable, they have fewer methods compared to lists. The most
commonly used methods are:

count() : Returns the number of occurrences of a value.

numbers = (1, 2, 3, 1, 2, 1)
print(numbers.count(1))

index() : Returns the index of the first occurrence of a value.

print(numbers.index(2))

When to Use Tuples

Use tuples when you want to ensure the data remains constant and cannot be modified.
Tuples are faster than lists for fixed data because of their immutability.

Use tuples as keys in dictionaries (since lists cannot be used as keys due to their
mutability).

Example:

location = {
(ue.7128, -74.0060): "New York",
(34.0522, -118.2437): "Los Angeles"

¥
print(location[(46.7128, -74.0060)])

New York

Unpacking Tuples

You can unpack a tuple into multiple variables. This is useful for assigning values from a
tuple to individual variables.

Example:

coordinates = (10.0, 20.0)
X, y = coordinates
print("x:", x)

print("y:", vy)

x: 10.0

y: 20.0

Example Program

fruits = ("apple", "banana", "cherry")

print("First fruit:", fruits[0])
print("Last fruit:", fruits[-1])

print("First two fruits:", fruits[:2])

numbers = (1, 2, 3)
repeated = numbers * 2
print("Repeated tuple:", repeated)

print("Count of 'banana':", fruits.count("banana"))
print("Index of 'cherry':", fruits.index("cherry"))

X, y, z = fruits
print("Unpacked values:", x, y, z)

location = {
(40.7128, -74.0060): "New York",
(34.0522, -118.2437): "Los Angeles"

}
print("Location:", location[(40.7128, -74.0060)])

First fruit: apple

Last fruit: cherry

First two fruits: ('apple', 'banana‘')
Repeated tuple: (1, 2, 3, 1, 2, 3)
Count of 'banana': 1

Index of 'cherry': 2

Unpacked values: apple banana cherry
Location: New York

9. Functions

A function is a reusable block of code that performs a specific task. Functions help organize
code, avoid repetition, and make programs easier to read and maintain. In Python, you can
define your own functions using the def keyword.

Defining a Function

To define a function, use the def keyword followed by the function name, parentheses (),
and a colon : . The code block inside the function is indented.

Syntax:

def (parameters):

return result

function_name : The name of the function (follows the same rules as variable names).
parameters : Inputs to the function (optional). These are variables that the function uses
to perform its task.

return : Specifies the value the function should return (optional). If omitted, the function
returns None .

Calling a Function

To use a function, you "call" it by writing its name followed by parentheses () . If the function
has parameters, you pass arguments inside the parentheses.

Example:

def 0:
print("Hello, World!")

greet()

Hello, World!

Function Parameters and Arguments

Parameters are variables listed in the function definition. Arguments are the actual values
passed to the function when it is called.

Example:

def (name):
print(f"Hello, {name}!")

greet("Alice")
greet("Bob")

Hello, Alice!
Hello, Bob!

Returning Values

Use the return statement to send a value back to the caller. A function can return any type
of data, including numbers, strings, lists, or even other functions.

Example:

def (a, b):
return a + b

result = add(3, 5)
print(result)

If a function doesn’t have a return statement, it implicitly returns None .

Default Parameters

You can provide default values for parameters. If the caller doesn’t pass an argument for that
parameter, the default value is used.

Example:

def (name="Guest"):
print(f"Hello, {name}!")

greet()
greet("Alice")

Hello, Guest!
Hello, Alice!

Keyword Arguments

When calling a function, you can specify arguments by their parameter names. This allows
you to pass arguments in any order.

Example:

def (pet_name, animal_type="dog"):
print(f"I have a {animal_type} named {pet_name}.")

describe_pet(pet_name="Max", animal_type="cat")

describe_pet(animal_type="hamster", pet_name="Bella")

I have a cat named Max.
I have a hamster named Bella.

Variable-Length Arguments

Sometimes, you may not know how many arguments will be passed to a function. Python
allows you to handle this using:

*args : Collects additional positional arguments as a tuple.
“kwargs **: Collects additional keyword arguments as a dictionary.

Example:

def (*args):
return (args)

print(add_numbers(1l, 2, 3))
def (**kwargs) :
for key, value in kwargs.items():

print(f"{key}: {value}")

describe_pet(name="Max", animal_type="dog", age=3)

6

name: Max
animal_type: dog
age: 3

Scope of Variables

Local Variables: Variables defined inside a function are local to that function and cannot
be accessed outside it.

Global Variables: Variables defined outside all functions are global and can be
accessed anywhere in the program.

Example:

x =10

def O:
y =9
print(x)
print(y)

my_function()
print(x)

10

10

Lambda Functions

A lambda function is a small, anonymous function defined using the lambda keyword. It
can have any number of arguments but only one expression.

Syntax:

lambda arguments: expression

Example:

Lambda function to add two numbers
add = lambda a, b: a + b
print(add(3, 5)) # Output: 8

Example Program

Working with Functions

Define a function
def greet(name="Guest"):
print(f"Hello, {name}!")

Call the function
greet() # Output: Hello, Guest!
greet("Alice") # Output: Hello, Alice!

Function with return value
def add(a, b):
return a + b

result = add(3, 5)
print("Sum:", result) # Output: Sum: 8

Function with =*args
def multiply(*args):
product = 1
for num in args:
product *= num
return product

print("Product:", multiply(2, 3, 4)) # Output: Product: 24

Lambda function
square = lambda x: x ** 2
print("Square of 5:", square(5)) # Output: Square of 5: 25

Hello, Guest!
Hello, Alice!
Sum: 8

Product: 24
Square of 5: 25

10. Return Statement

The return statement is used in functions to send a value back to the caller. It also
terminates the execution of the function, meaning any code after the return statement will

not be executed.

Purpose of the Return Statement

Return a Value: The primary purpose of the return statement is to return a value (or
multiple values) from a function to the caller.
Exit a Function: The return statementimmediately exits the function, even if there is

code after it.

Syntax

def (parameters):

return value

If no value is specified, the function returns None .

Returning a Single Value

You can return a single value, such as a number, string, or boolean.

Example:

def (a, b):
return a + b

result = add(3, 5)
print(result)

Returning Multiple Values

Python allows you to return multiple values from a function by separating them with commas.
These values are returned as a tuple.

Example:

def (a, b):
=a+hb
difference = a - b
product = a * b
return , difference, product

result = calculate(10, 5)
print(result)

, difference, product = calculate(10, 5)
print("Sum:",)
print("Difference:", difference)
print("Product:", product)

(15, 5, 50)
Sum: 15
Difference: 5
Product: 50

Returning None

If a function does not have a return statement or has a return statement without a value,
it returns None .

Example:

def (name):
print(f"Hello, {name}!")

result = greet("Alice")
print(result)

Hello, Alice!
None

Early Return
You can use the return statement to exit a function early based on a condition.

Example:

def (number) :
if number > 0:
return True
return False
print(is_positive(10))
print(is_positive(-5))

True
False

Returning Complex Data Types
You can return complex data types like lists, dictionaries, or even other functions.

Example:

def (limit):
return [x for x in (limit) if x % 2 == 0]

print(get_even_numbers(10))

def (name, age):
return {"name": name, "age": age}

print(create_person("Alice", 25))
[0, 2, 4, 6, 8]

{'name': 'Alice', 'age': 25}

Returning Functions

You can also return a function from another function. This is useful in advanced
programming techniques like closures and decorators.

Example:

def (factor):
def (number) :
return number * factor
return multiplier

double = create_multiplier(2)
print(double(5))

10

Example Program

def (a, b):
return a + b

print("Sum:", add(3, 5))

def (a, b):
=a+hb
difference = a - b
product = a * b
return , difference, product

, difference, product = calculate(10, 5)
print("Sum:",)
print("Difference:", difference)
print("Product:", product)

def (number) :
if number > 0:
return True
return False

print("Is 10 positive?", is_positive(10))
print("Is -5 positive?", is_positive(-5))

def (limit):

return [x for x in (limit) if x % 2 == 0]
print("Even numbers up to 10:", get_even_numbers(10))
def (name, age):

return {"name": name, "age": age}

print("Person:", create_person("Alice", 25))
def (factor):
def (number) :

return number * factor
return multiplier

double = create_multiplier(2)
print("Double of 5:", double(5))

Sum: 8

Sum: 15
Difference: 5
Product: 50

Is 10 positive? True

Is -5 positive? False

Even numbers up to 10: [0, 2, 4, 6, 8]
Person: {'name': 'Alice',6 'age': 25}
Double of 5: 10

11. If Statements

If statements are used to make decisions in your code. They allow you to execute a block of
code only if a certain condition is true. If statements are a fundamental part of programming
and are used to control the flow of your program.

Syntax of an If Statement

The basic structure of an if statement is as follows:

if condition:

condition : An expression that evaluates to True or False.

Indentation: The code block under the if statement must be indented (usually by 4
spaces).

Example of a Simple If Statement

age = 18
if age >= 18:

print("You are an adult.")

You are an adult.

If age is greater than or equal to 18, the message "You are an adult." will be
printed. Otherwise, nothing happens.

Adding an Else Clause

The else clause is used to execute a block of code when the if conditionis False.

Syntax:

if condition:

else:

Example:

age = 15

if age >= 18:

print("You are an adult.")
else:

print("You are a minor.")

You are a minor.

If age is less than 18, the message "You are a minor." will be printed.

Using Elif for Multiple Conditions

The elif (short for "else if") clause is used to check multiple conditions. It is placed
between the if and else clauses.

Syntax:

if conditionl:
elif condition2:

else:

Example:

age = 25

if age < 13:

print("You are a child.")
elif age < 18:

print("You are a teenager.")
else:

print("You are an adult.")

You are an adult.

This program checks multiple conditions and prints the appropriate message based on
the value of age .

Nested If Statements

You can nest if statements inside other if statements to create more complex decision-
making logic.

Example:

age = 20
has_license = True

if age >= 18:
if has_license:

print("You can drive.")
else:

print("You are old enough to drive but don't have a license.")
else:

print("You are too young to drive.")

You can drive.

Logical Operators in If Statements

You can use logical operators (and, or, not) to combine multiple conditions.

and : Both conditions must be true.

age = 20
has_license = True

if age >= 18 and has_license:
print("You can drive.")

You can drive.

or : At least one condition must be true.

age = 16
has_parental_consent = True

if age >= 18 or has_parental_consent:
print("You can participate.")

You can participate.
not : Inverts the condition.

is_raining = False

if not is_raining:
print("Let's go outside!")

Let's go outside!

Truthy and Falsy Values

In Python, conditions are evaluated based on whether they are "truthy" or "falsy":

Falsy Values: False, 0, "" (empty string), None, [1 (empty list), {} (empty
dictionary), etc.
Truthy Values: Everything else.

Example:

name = ""

if name:

print("Hello, " + name)
else:

print("Name is empty.")

Name is empty.

Since name is an empty string (falsy), the program will print "Name is empty.".

Example Program

age = 18
if age >= 18:
print("You are an adult.")

age = 15
if age >= 18:

print("You are an adult.")
else:

print("You are a minor.")

age = 25
if age < 13:

print("You are a child.")
elif age < 18:

print("You are a teenager.")
else:

print("You are an adult.")

age = 20
has_license = True
if age >= 18:

if has_license:
print("You can drive.")
else:
print("You are old enough to drive but don't have a license.")
else:
print("You are too young to drive.")

age = 20

has_license = True

if age >= 18 and has_license:
print("You can drive.")

name = ""
if name:

print("Hello, " + name)
else:

print("Name is empty.")

You are an adult.
You are a minor.
You are an adult.
You can drive.
You can drive.
Name is empty.

12. If Statements & Comparisons

In Python, comparison operators are used to compare values and make decisions in if
statements. These operators evaluate to True or False , which determines whether a block
of code is executed.

Comparison Operators

Here are the most commonly used comparison operators:

Operator Description Example Result
== Equal to 5 == True
I= Not equal to 5 1=3 True
> Greater than 10 > 5 True
= Less than 10 < 5 False
>= Greater than orequalto 10 >= 10 True
<= Less than or equal to 10 <= 5 False

Using Comparisons in If Statements

Comparison operators are often used in if statements to make decisions based on the
relationship between values.

Example:

x = 10
y =95
if x > y:
print("x is greater than y")

else:
print("x is not greater than y")

x is greater than y

Chaining Comparisons

You can chain multiple comparisons using logical operators (and, or, not) to create more
complex conditions.

Example:

x = 10

if x >y and y < z:
print("x is greater than y, and y is less than z")

x is greater than y, and y is less than z

Chaining Comparisons

You can chain multiple comparisons using logical operators (and, or, not) to create more
complex conditions.

Example:
x = 10
y =5
z =17

if x >y and y < z:
print("x is greater than y, and y is less than z")

x is greater than y, and y is less than z

Comparing Strings

You can also use comparison operators with strings. Strings are compared lexicographically
(based on their Unicode values).

Example:
namel = "Alice"
name2 = "Bob"

if namel < name2:

print(f"{namel} comes before {name2} in the dictionary.")
else:

print(f"{namel} comes after {name2} in the dictionary.")

Alice comes before Bob in the dictionary.

Comparing Lists

Lists can also be compared using comparison operators. Python compares lists element by

element.

Example:
listl = [1, 2, 3]
list2 = [1, 2, u]

if listl < list2:
print("listl is less than list2")

listl is less than list2

Using in and not in for Membership

The in and not in operators are used to check if a value exists (or does not exist) in a
sequence (e.g., list, tuple, string).

Example:

fruits = ["apple", "banana", "cherry"]

if "banana" in fruits:
print("Banana is in the list.")

if "mango" not in fruits:
print("Mango is not in the list.")
Banana is in the list.

Mango is not in the list.

Example Program

Working with If Statements & Comparisons

Comparing numbers
x =10
y =5

if x > y:

print("x is greater than y")
else:

print("x is not greater than y")

Chaining comparisons
z =17
if x >y and y < z:
print("x is greater than y, and y is less than z")

Comparing strings
namel = "Alice"
name2 = "Bob"

if namel < name2:

print(f"{namel} comes before {name2} in the dictionary.")
else:

print(f"{namel} comes after {name2} in the dictionary.")

Comparing lists
listl = [1, 2, 3]
list2 = [1, 2, 4]

if listl < list2:
print("listl is less than list2")

Membership testing
fruits = ["apple", "banana", "cherry"]

if "banana" in fruits:
print("Banana is in the list.")

if "mango" not in fruits:
print("Mango is not in the 1list.")

X 1is greater than y

x is greater than y, and y is less than z
Alice comes before Bob in the dictionary.
listl is less than list2

Banana is in the list.

Mango is not in the list.

13. Dictionaries

A dictionary is a collection of key-value pairs. It is an unordered, mutable (changeable), and
indexed data structure. Dictionaries are optimized for retrieving values when the key is
known. Each key in a dictionary must be unique, and it maps to a specific value.

Creating a Dictionary

Dictionaries are created using curly braces {} orthe dict() constructor. Each key-value
pair is separated by a colon : , and pairs are separated by commas.

Syntax:

my_dict = {
keyl: valuel,
key2: value2,
key3: value3

¥
Example:
person = {
"name": "Alice",
"age": 25,
"city": "New York"
}
person = (name="Alice", age=25, city="New York")

Accessing Dictionary Values

You can access the value associated with a key using square brackets [] or the get()
method.

Example:

person = {
"name": "Alice",
"age": 25,

"city": "New York"

print(person["name"])
print(person.get("age"))

Alice
25

If the key does not exist, using [] will raise a KeyError , while get() will return None
(or a default value you specify).

print(person.get("country", "Unknown"))

Unknown

Adding or Updating Dictionary Entries
You can add a new key-value pair or update an existing one by assigning a value to a key.

Example:

person = {
"name": "Alice",
"age": 25,
"city": "New York"

person["country"] = "USA"

person["age"] = 26

print(person)

{'name': 'Alice', 'age': 26, 'city': 'New York',6 ‘'country': 'USA'}

Removing Dictionary Entries

You can remove a key-value pair using:

del : Deletes the key-value pair.

del person["city"]
print(person)

{'name': 'Alice', 'age': 26, 'country': 'USA'}
pop() : Removes the key-value pair and returns the value.

age = person.pop("age")
print(age)
print(person)

26
{'name': 'Alice', 'country': 'USA'}

popitem() : Removes and returns the last inserted key-value pair (Python 3.7+).

last_item = person.popitem()
print(last_item)
print(person)

('country', 'USA')
{'name': 'Alice'}

clear() : Removes all key-value pairs from the dictionary.

person.clear()
print(person)

i}

Dictionary Methods

Here are some commonly used dictionary methods:

keys() : Returns a list of all keys in the dictionary.

print(person.keys())

dict_keys([]1)
values() : Returns a list of all values in the dictionary.

print(person.values())

dict_values([])
items() : Returns a list of key-value pairs as tuples.

print(person.items())

dict_items([]1)
update() : Merges another dictionary into the current one.
person.update({"country": "USA", "age": 26})
print(person)
{'country': 'USA', 'age': 26}
copy () : Returns a shallow copy of the dictionary.

person_copy = person.copy()
print(person_copy)

{'country': 'USA', ‘'age': 26}

Iterating Over a Dictionary

You can iterate over a dictionary using a for loop. By default, the loop iterates over the
keys.

Example:

person = {
"name": "Alice",
"age": 25,
"city": "New York"

for key in person:
print(key)

for value in person.values():
print(value)

for key, value in person.items():
print(f"{key}: {value}")

name
age

city

Alice

25

New York

name: Alice
age: 25

city: New York

Dictionary Comprehensions

Similar to list comprehensions, dictionary comprehensions allow you to create dictionaries in
a concise way.

Syntax:
{key_expression: value_expression for item in iterable}

Example:

squares = {x: x ** 2 for x in (1, 6)}
print(squares)

{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Nested Dictionaries

Dictionaries can contain other dictionaries, allowing you to create complex data structures.

Example:

students = {
"Alice": {"age": 25, "grade": "A"},
IlBobll: {uagen: 22, "gra.de": "B"},
"Charlie": {"age": 23, "grade": "C"}

print(students["Alice"]["age"])

25

Example Program

person = {
"name": "Alice",
"age": 25,
"city": "New York"
}
print("Name:", person["name"])

print("Age:", person.get("age"))

person["country"] = "USA"
person["age"] = 26

del person["city"]
age = person.pop("age")
last_item = person.popitem()

print("Keys:", person.keys())
print("Values:", person.values())
print("Items:", person.items())

for Key, value in person.items():
print(f"{key}: {value}")

squares = {x: X ** 2 for x in (1, 6)}
print("Squares:", squares)
students = {

"Alice": {"age": 25, "grade": "A"},
"Bob": {"age": 22, "grade": "B"},
"Charlie": {"age": 23, "grade": "C"}

¥

print("Alice's age:", students["Alice"]["age"])

Name: Alice

Age: 25

Keys: dict_keys(['name'])

Values: dict_values(['Alice'])

Items: dict_items([('name', 'Alice')])
name: Alice

Squares: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}
Alice's age: 25

14. While Loop

A while loop is used to repeatedly execute a block of code as long as a condition is True . It
is useful when you don’t know in advance how many times the loop needs to run.

Syntax of a While Loop

while condition:

condition : An expression that evaluates to True or False . The loop continues as
long as the condition is True .

Indentation: The code block under the while statement must be indented (usually by 4
spaces).

Example of a Simple While Loop

count = 0

while count < 5:
print("Count:", count)
count += 1

Count: 0
Count: 1
Count: 2
Count: 3
Count: 4

The loop runs as long as count < 5 is True . Once count reaches 5, the condition
becomes False, and the loop stops.

Infinite While Loop

If the condition of a while loop is always True , the loop will run indefinitely. This is called
an infinite loop.

Example:

while True:
print("This is an infinite loop!")

To stop an infinite loop, you can use Ctrl+C in the terminal or add a break statement
(explained later).

Breaking Out of a While Loop

You can use the break statement to exit a loop prematurely, even if the condition is still
True .

Example:

count = 0

while True:
print("Count:", count)
count += 1
if count >= 5:

break
Count: 0
Count: 1
Count: 2
Count: 3
Count: 4

Skipping Iterations with Continue

The continue statement skips the rest of the code in the current iteration and moves to the
next iteration of the loop.

Example:

count = 0

while count < 5:
count += 1

if count == 3:
continue
print("Count:", count)
Count: 1
Count: 2
Count: 4
Count: §

When count is 3, the continue statement skips the print() statement.

While Loop with Else

You can add an else block to a while loop. The else block executes when the loop
condition becomes False . However, if the loop is exited using a break statement, the
else block is skipped.

Example:

count = 0

while count < 5:
print("Count:", count)
count += 1

else:
print("Loop finished!")

Count: ©
Count: 1
Count: 2
Count: 3
Count: 4

Loop finished!

Nested While Loops
You can nest while loops inside other while loops to create more complex logic.

Example:

while i <= 3:
j=1
while j <= 3:
print(f"i: {i}, j: {3}
j+=1
i+=1

He He He He He B B
WRNNNRERPPR
e e e e e e .
B W N R WN R

w w
w N

Practical Example: Guessing Game

Here’s a simple guessing game using a while loop:

secret_number = 7
guess = None

while guess != secret_number:
guess = (("Guess the secret number (between 1 and 10): "))
if guess < secret_number:
print("Too low!")
elif guess > secret_number:
print("Too high!")
else:
print("Congratulations! You guessed it!")

Guess the secret number (between 1 and 10): 5

Too low!

Guess the secret number (between 1 and 10): 9

Too high!

Guess the secret number (between 1 and 10): 7

Congratulations! You guessed it!

Example Program

count = 0

while count < 5:
print("Count:", count)
count +=1

Infinite While Loop with Break
count = 0
while True:
print("Count:", count)
count += 1
if count >= 5:
break

While Loop with Continue
count = 0
while count < 5:
count += 1
if count ==
continue
print("Count:", count)

While Loop with Else

count = 0

while count < 5:
print("Count:", count)
count += 1

else:
print("Loop finished!")

Nested While Loops

a, 8 i
while i <= 3:
j=1
while j <= 3:
print(f"i: {i}, j: {ji™)
j+=1
i+=1

Guessing Game
secret_number = 7
guess = None
while guess != secret_number:
guess = int(input("Guess the secret number (between 1 and 10): "))
if guess < secret_number:
print("Too low!")
elif guess > secret_number:
print("Too high!")
else:
print("Congratulations! You guessed it!")

16. For Loops

A for loop is used to iterate over a sequence (such as a list, tuple, string, or range) and
execute a block of code for each item in the sequence. For loops are commonly used when
you know in advance how many times you want to repeat a task.

Syntax of a For Loop

for item in sequence:

item : A variable that takes the value of each element in the sequence during each
iteration.

sequence : A collection of items (e.qg., list, tuple, string, or range).

Indentation: The code block under the for statement must be indented (usually by 4

spaces).

Iterating Over a List

You can use a for loop to iterate over a list and perform an action for each item.

Example:

fruits = ["apple", "banana", "cherry"]
for fruit in fruits:

print(fruit)

apple
banana
cherry

Iterating Over a String

A string is a sequence of characters, so you can iterate over each character in a string.

Example:

message = "Hello"

for char in message:
print(char)

O ~ ~ m T

Using the range() Function
The range() function generates a sequence of numbers, which is often used in for loops.

Syntax:

(start, stop, step)

start : The starting value (inclusive). Defaultis © .
stop : The ending value (exclusive).

step : The increment between numbers. Defaultis 1.
Examples:

Iterate over a range of numbers:

for i in (5):
print(i)

E w NN PRFPRP O

Specify a start and stop:

for i in (2, 6):
print(i)

aa EFE w N

Specify a step:

for i in (1, 10, 2):
print(i)

O J 00 WPk

Nested For Loops

You can nest for loops inside other for loops to create more complex logic.

Example:
for i in (3):
for j in (3):
print(f"i: {i}, j: {3
i: 0, j: O
i: 0, j: 1
i: 0, j: 2
i: 1, j: 0O
i: 1, j: 1
i: 1, j: 2
i: 2, j: O
i: 2, j: 1
i: 2, j: 2

Breaking Out of a For Loop
You can use the break statementto exita for loop prematurely.

Example:

for i in (10):
if i ==
break
print(i)

E w NN PR OO

Skipping Iterations with Continue

The continue statement skips the rest of the code in the current iteration and moves to the
next iteration.

Example:

for i in (5):
if i == 2:
continue
print(i)

E W -k o

For Loop with Else

You can add an else blockto a for loop. The else block executes when the loop finishes
normally (i.e., without a break statement).

Example:

for i in (3):
print(i)
else:
print("Loop finished!")

0
1
2
Loop finished!

Practical Example: Summing Numbers

Here’s an example of using a for loop to calculate the sum of numbers in a list:

numbers = [1, 2, 3, 4, 5]
total = 0

for num in numbers:
total += num

print("Sum:", total)

Sum: 15

Example Program

fruits = ["apple", "banana", "cherry"]
for fruit in fruits:
print(fruit)

message = "Hello"
for char in message:
print(char)

for i in (5):
print(i)

for i in (2, 6):
print(i)

for i in (1, 10, 2):
print(i)

for i in (3):
for j in (3):
print(f"i: {i}, j: {j}™)

for i in (10):
if i ==
break
print(i)
for i in (5):
if i == 2:
continue
print(i)
for i in (3):
print(i)
else:

print("Loop finished!")

numbers = [1, 2, 3, 4, 5]
total = 0
for num in numbers:

total += num
print("Sum:", total)

17. Exponent Function

The exponent function is used to raise a number to a specified power. In Python, you can
calculate exponents using the ** operator or the built-in pow() function. Additionally, the
math module provides more advanced exponentiation capabilities.

Using the "~ Operator**
The =*x operator is the simplest way to calculate exponents in Python.

Syntax:

base ** exponent

Examples:

result = 2 *x 3
print(result)

result = 5 *% 2
print(result)

25

Using the pow() Function

The pow() function is a built-in function that calculates the power of a number. It takes two
arguments: the base and the exponent.

Syntax:

(base, exponent)

Examples:
result = 2, 3)
print(result)
result = (5, 2)
print(result)
8
25

Using the math.pow() Function

The math module provides a pow() function that works similarly to the built-in pow()
function but always returns a float.

Syntax:
math. (base, exponent)

Steps:

Import the math module.

Use math.pow() to calculate the exponent.

Example:

import math

result = math. 2, 3)
print(result)

result = math. (5, 2)
print(result)

8.0
25.0

Handling Negative Exponents
You can use negative exponents to calculate the reciprocal of a number raised to a power.

Examples:

result = 2 *x -3
print(result)

result = (5, -2)
print(result)

0.125
0.o4

Handling Fractional Exponents

Fractional exponents allow you to calculate roots. For example, raising a number to the
power of 1/2 calculates its square root.

Examples:

result = 16 **x 0.5
print(result)

result = 27 *x (1/3)
print(result)

4.0
3.0

Practical Example: Custom Exponent Function

You can create a custom function to calculate exponents. This is useful if you want to add
additional logic or error handling.

Example:

def (base, power):
return base ** power

result = exponent(2, 3)
print(result)

Example Program

result = 2 ** 3
print("2 *x 3 =", result) # Output: 8

result = 5 %% 2
print("5 *x 2 =", result) # Output: 25

Using the pow() function
result = pow(2, 3)
print("pow(2, 3) =", result) # Output: 8

result = pow(5, 2)
print("pow(5, 2) =", result) # Output: 25

Using math.pow()

import math

result = math.pow(2, 3)

print("math.pow(2, 3) =", result) # Output: 8.0

result = math.pow(5, 2)
print("math.pow(5, 2) =", result) # Output: 25.0

Handling negative exponents
result = 2 *x -3
print("2 ** -3 =", result) # Output: 0.125

result = pow(5, -2)
print("pow(5, -2) =", result) # Output: 0.04

Handling fractional exponents
result = 16 ** 0.5
print("16 ** 0.5 =", result) # Output: 4.0

result = 27 ** (1/3)
print("27 ** (1/3) =", result) # Output: 3.0

Custom exponent function
def exponent(base, power):
return base ** power

result = exponent(2, 3)
print("exponent(2, 3) =", result) # Output: 8

2 *% 3 =8

5 *¥x 2 = 25
pow(2, 3) = 8
pow(5, 2) = 25
math.pow(2, 3)
math.pow(5, 2)
2 *¥%x =3 = 0.125

8.0
25.0

pow(5, -2) = 0.04
16 ** 0.5 = 4.0

27 *x (1/3) = 3.0
exponent(2, 3) = 8

18. 2D Lists & Nested Loops

A 2D list (or list of lists) is a list where each element is itself a list. This is often used to
represent grids, matrices, or tables. To work with 2D lists, you typically use nested loops—a
loop inside another loop—to iterate over the rows and columns.

Creating a 2D List
You can create a 2D list by nesting lists inside another list.

Example:

matrix = [
[1, 2, 31,
[4, 5, 6],
[7, 8, 9]

Accessing Elements in a 2D List

To access an element in a 2D list, use two indices: the first for the row and the second for
the column.

Syntax:
matrix[row] [column]
Example:

matrix = [
[1, 2, 31,
[4, 5, 6],
[7, 8, 9]

print(matrix[1]1[2]1)

Iterating Over a 2D List Using Nested Loops

To iterate over all elements in a 2D list, use a nested loop:

The outer loop iterates over the rows.
The inner loop iterates over the columns.

Example:

matrix = [
[1, 2, 31,
[4, 5, 6],
[7, 8, 9]

for row in matrix:
for element in row:
print(element, end=" ")
print()

123
456
789

Modifying a 2D List
You can modify elements in a 2D list using their indices.

Example:

matrix = [
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]

matrix[0][1] = 10

print(matrix)

([1, 1e, 31, [4, 5, 61, [7, 8, 9]1]

Creating a 2D List Using List Comprehension

You can use list comprehension to create a 2D list in a concise way.

Example:
matrix = [[@ for _ in (3)] for _ in (3)1]
print(matrix)

(e, o, o], [e, @, @], [e, 6, 6]]

Practical Example: Matrix Addition

Here’s an example of adding two 2D lists (matrices) element-wise:

matrixl = [

[1, 2],
[3, u]
]
matrix2 = [
[5, 6],
[7, 8]
]
result = [[0 for _ in (2)] for _ in (201
for i in (2):

for j in (2):

result[i][j] = matrix1[i][j] + matrix2[i][j]

print(result)
Output: [[6, 8], [10, 12]]

[[e, 8], [10, 12]]

Example Program

Working with 2D Lists & Nested Loops

Creating a 2D list
matrix = [

[1, 2, 3],
[4, 5, 6],
[7, 8, 9]

Accessing elements
print("Element at row 1, column 2:", matrix[1]1[2]) # Output: 6

Iterating over a 2D list
print("Matrix elements:")
for row in matrix:
for element in row:
print(element, end=" ")
print()

Modifying a 2D list
matrix[0][1] = 10
print("Modified matrix:")
for row in matrix:
for element in row:
print(element, end=" ")
print()

Creating a 2D list using list comprehension
matrix2 = [[0 for _ in range(3)] for
print("2D list created using list comprehension:")

_ in range(3)]
for row in matrix2:
for element in row:
print(element, end=" ")
print()

Matrix addition

matrixl = [

[1, 2],
[3, u]
]
matrix2 = [
[5, 6],
[7, 8]
]
result = [[0 for _ in (2)] for _ in (201
for i in (2):
for j in (2):

result[i][j] = matrix1[il[j] + matrix2[il[j]

print("Result of matrix addition:")
for row in result:
for element in row:
print(element, end=" ")
print()

Element at row 1, column 2: 6
Matrix elements:

123

456

789

Modified matrix:

110 3

456

7809

2D list created using list comprehension:
000

000

000

Result of matrix addition:

6 8

10 12

19. Comments

Comments are notes or explanations added to your code to make it easier to understand.
They are ignored by the Python interpreter and are only meant for humans (developers,
collaborators, or your future self). Comments are essential for writing clean, maintainable,
and readable code.

Types of Comments

Python supports two types of comments:

Single-line comments: Used for short explanations or notes.
Multi-line comments: Used for longer descriptions or documentation.

Single-Line Comments

Single-line comments start with the # symbol. Everything after # on that line is ignored by
the Python interpreter.

Syntax:

Example:

15

Multi-Line Comments

Python doesn’t have a specific syntax for multi-line comments. However, you can use multi-
line strings (enclosed in triple quotes ''' or """) to create block comments. These are not
technically comments but are treated as strings and ignored if not assigned to a variable.

Syntax:

This is a multi-line comment.
It can span multiple lines.

Example:

This program calculates the area of a rectangle.
It takes the length and width as input and prints the area.

length = 10

width = 5

area = length * width
print("Area:", area)
Area: 50

Best Practices for Using Comments

Explain Why, Not What: Comments should explain why the code is written a certain
way, not what the code does (unless the code is complex or non-obvious).

=5+ 10

total_cost = price + (price * tax_rate)

Keep Comments Up-to-Date: If you change the code, make sure to update the
comments to reflect the changes.

Avoid Over-Commenting: Don’t add comments for every line of code. Only comment
when necessary to clarify complex logic or decisions.

Use Comments for TODOs: Use comments to mark areas of the code that need
improvement or additional work.

def (numbers):
return (numbers)

Inline Comments

Inline comments are placed on the same line as the code. They should be used sparingly
and only to clarify complex or non-obvious code.

Example:

10

X
1l

Docstrings

Docstrings are a special type of multi-line comment used to document functions, classes,
and modules. They are enclosed in triple quotes and are accessible at runtime using the
doc__ attribute.

Example:

def (a, b):

This function adds two numbers and returns the result.

Parameters:
a (int): The first number.
b (int): The second number.

Returns:
int: The sum of a and b.

return a + b

print(add.__doc__)

This function adds two numbers and returns the result.
Parameters:
a (int): The first number.

b (int): The second number.

Returns:
int: The sum of a and b.

Example Program

Multi-line comment
This program takes the length and width of a rectangle as input,
calculates the area, and prints the result.

Variables
length = 10 # Length of the rectangle
width = 5 # Width of the rectangle

Calculate area
area = length * width # Area = length * width

Print the result
print("Area:", area)

Function with a docstring
def multiply(Ca, b):

This function multiplies two numbers and returns the result.

Parameters:
a (int): The first number.
b (int): The second number.

Returns:
int: The product of a and b.

return a * b
Access the docstring
print(multiply.__doc__)
Area: 50
This function multiplies two numbers and returns the result.
Parameters:
a (int): The first number.

b (int): The second number.

Returns:
int: The product of a and b.

20. Try /| Except

The trylexcept block is used in Python to handle exceptions (errors) that occur during the
execution of a program. Instead of crashing the program, you can catch and handle
exceptions gracefully, allowing the program to continue running or provide meaningful
feedback to the user.

What Are Exceptions?

Exceptions are errors that occur during the execution of a program. Examples include:

ZeroDivisionError : Division by zero.

TypeError : Performing an operation on incompatible types.
ValueError : Passing an invalid value to a function.
FileNotFoundError : Trying to open a file that doesn’t exist.

Syntax of Try/Except

The basic structure of a try/except block is as follows:

try:

except ExceptionType:

try block: Contains the code that might raise an exception.
except block: Contains the code to handle the exception if it occurs.

Handling Specific Exceptions

You can specify the type of exception to catch in the except block. This allows you to
handle different exceptions differently.

Example:

try:
num = (("Enter a number: "))
result = 10 / num
print("Result:", result)

except ZeroDivisionError:

print("Error: Cannot divide by zero.")
except ValueError:
print("Error: Invalid input. Please enter a number.")

Enter a number: 0

Error: Cannot divide by zero.

If the user enters 0, the program will catch the ZeroDivisionError and print "Error:
Cannot divide by zero."

If the user enters a non-numeric value, the program will catch the ValueError and print

"Error: Invalid input. Please enter a number."

Handling Multiple Exceptions in One Block
You can handle multiple exceptions in a single except block by specifying them as a tuple.

Example:

try:
num = (("Enter a number: "))
result = 10 / num
print("Result:", result)
except (ZeroDivisionError, ValueError):
print("Error: Invalid input or division by zero.")

Enter a number: a

Error: Invalid input or division by zero.

Using a Generic Exception

You can use a generic except block to catch all exceptions. However, this is generally not
recommended because it can hide unexpected errors.

Example:

try:
num = (("Enter a number: "))

result = 10 / num

print("Result:", result)
except:

print("An error occurred.")

Enter a number: 0

An error occurred.

The Else Block

The else block is executed if no exceptions occur in the try block. It is useful for code that
should only run if the try block succeeds.

Example:

try:
num = (("Enter a number: "))
result = 10 / num
except ZeroDivisionError:
print("Error: Cannot divide by zero.")
except ValueError:
print("Error: Invalid input. Please enter a number.")
else:
print("Result:", result)

Enter a number: 0

Error: Cannot divide by zero.

The Finally Block

The finally block is executed no matter what—whether an exception occurs or not. It is
typically used for cleanup actions, such as closing files or releasing resources.

Example:

try:
= ("example.txt", "r")
content = .read()

print(content)
except FileNotFoundError:
print("Error: File not found.")
finally:
.close()
print("File closed.")

File closed.

Raising Exceptions

You can raise exceptions manually using the raise keyword. This is useful for enforcing
constraints or signaling errors in your code.

Example:

def (a, b):
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b

try:
result = divide(10, 0)
except ValueError as e:
print(e)

Cannot divide by zero.

Custom Exceptions

You can define your own exceptions by creating a new class that inherits from Python’s built-
in Exception class.

Example:
class (Exception):
pass
def (number) :

if number < 0O:
raise NegativeNumberError("Negative numbers are not allowed.")

try:
check_positive(-5)
except NegativeNumberError as e:
print(e) # Output: Negative numbers are not allowed.

Negative numbers are not allowed.

Example Program

Working with Try/Except

Handling specific exceptions
try:
num = int(input("Enter a number: "))
result = 10 / num
print("Result:", result)
except ZeroDivisionError:
print("Error: Cannot divide by zero.")
except ValueError:
print("Error: Invalid input. Please enter a number.")

Using else and finally
try:
file = open("example.txt", "r")
content = file.read()
print(content)
except FileNotFoundError:
print("Error: File not found.")
else:
print("File read successfully.")
finally:
file.close()
print("File closed.")

Raising exceptions
def divide(a, b):
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b

try:
result = divide(10, 0)
except ValueError as e:
print(e)

class (Exception):
pass

def (Cnumber) :
if number < 0:
raise NegativeNumberError("Negative numbers are not allowed.")

try:
check_positive(-5)

except NegativeNumberError as e:
print(e)

Enter a number: 0

Error: Cannot divide by zero.

File read successfully.

File closed.

Cannot divide by zero.

Negative numbers are not allowed.

21. Reading Files

Reading files is a common task in programming. Python provides built-in functions to open,
read, and manipulate files. Files can contain text, data, or any other information, and reading
them allows you to process their contents in your program.

Opening a File

To read a file, you first need to open it using the open() function. The open() function
returns a file object, which provides methods for reading and manipulating the file.

Syntax:

("filename", "mode")

filename : The name of the file (including the path if necessary).

mode : The mode in which the file is opened. For reading, use "r" (read mode).

Example:

= ("example.txt", "r")

Reading the Entire File
You can read the entire contents of a file using the read() method.

Example:

= ("example.txt", "r")
content = .read()
print(content)

.close()

Hello from the file

this is the example file for working with files in the python

read() : Reads the entire file as a single string.
close() : Closes the file to free up system resources.

Reading Line by Line

You can read a file line by line using the readline() method or iterate over the file object
directly.

Using readline():

= ("example.txt", "r")
line = .readline()
while line:
print(line, end="")
line = .readline()
.close()

Hello from the file

this is the example file for working with files in the python

Using a for loop:

= ("example.txt", "r")
for line in

print(line, end="")
.close()

Hello from the file
this is the example file for working with files in the python

Reading All Lines into a List

You can read all lines of a file into a list using the readlines() method.

Example:

= ("example.txt", "r")
lines = .readlines()
for line in lines:
print(line, end="")
.close()

Hello from the file
this is the example file for working with files in the python

readlines() : Returns a list where each element is a line from the file.

Using with for File Handling

The with statementis the recommended way to work with files. It automatically closes the
file when the block inside with is exited, even if an exception occurs.

Syntax:
with ("filename", "mode") as
Example:
with ("example.txt", "r") as
content = .read()

print(content)

Hello from the file
this is the example file for working with files in the python

No need to call close() explicitly—it's handled automatically.

Handling File Not Found Errors

If the file does not exist, Python will raise a FileNotFoundError . You can handle this using
a try/except block.

Example:
try:
with ("example.txt", "r") as
content = .read()
print(content)

except FileNotFoundError:
print("Error: File not found.")

Hello from the file
this is the example file for working with files in the python

Reading Specific Parts of a File

You can read a specific number of characters from a file using the read(size) method,
where size is the number of characters to read.

Example:

with ("example.txt", "r") as
first_10_chars = .read(10)
print(first_10_chars)

Hello from

Example Program

Working with Reading Files

Reading the entire file

with open("example.txt", "r") as file:
content = file.read()
print("Entire file content:")
print(content)

Reading line by line
with open("example.txt", "r") as file:
print("\nFile content line by line:")
for line in file:
print(line, end="")

Reading all lines into a list
with open("example.txt", "r") as file:
lines = file.readlines()
print("\nFile content as a list of lines:")
for line in lines:
print(line, end="")

Handling file not found errors
try:
with open("nonexistent.txt", "r") as file:
content = file.read()
print(content)
except FileNotFoundError:
print("\nError: File not found.")

Reading specific parts of a file

with open("example.txt", "r") as file:
first_10_chars = file.read(10)
print("\nFirst 10 characters of the file:")
print(first_10_chars)

Entire file content:
Hello from the file
this is the example file for working with files in the python

File content line by line:
Hello from the file
this is the example file for working with files in the python

File content as a list of lines:
Hello from the file
this is the example file for working with files in the python

Error: File not found.

First 10 characters of the file:
Hello from

22. Writing to Files

Writing to files is a common task in programming. Python provides built-in functions to open,
write, and manipulate files. You can create new files, overwrite existing files, or append to
existing files.

Opening a File for Writing

To write to a file, you need to open it in write mode ("w") or append mode ("a"). The
open() function returns a file object, which provides methods for writing to the file.

Syntax:

= ("filename", "mode")

filename : The name of the file (including the path if necessary).

mode :
"w" : Write mode (overwrites the file if it exists or creates a new file if it doesn’t).
"a" : Append mode (adds to the end of the file if it exists or creates a new file if it
doesn’t).

Example:

= ("example.txt", "w")

Writing to a File
You can write to a file using the write() method. This method writes a string to the file.

Example:

= ("example.txt", "w"
.write("Hello, World!\n")
.write("This is a new line.")

.close()

with ("example.txt", "r") as
content = .read()
print(content)

Hello, World!
This is a new line.

write() : Writes a string to the file.
close() : Closes the file to free up system resources.

Appending to a File

To add content to the end of a file without overwriting it, open the file in append mode ("a").

Example:

= ("example.txt", "a")
.write("\nThis line is appended.")
.close()

with ("example.txt", "r") as
content = .read()
print(content)

Hello, World!
This is a new line.
This line is appended.

Using with for File Handling

The with statement is the recommended way to work with files. It automatically closes the
file when the block inside with is exited, even if an exception occurs.

Syntax:

with ("filename", "mode") as

Example:

with ("example.txt", "w") as
.write("Hello, World!\n")
.write("This is a new line.")

with ("example.txt", "r") as
content = .read()
print(content)

Hello, World!
This is a new line.

Writing Multiple Lines

You can write multiple lines to a file using the writelines() method. This method takes a
list of strings and writes them to the file.

Example:

lines = ["Line 1\n", "Line 2\n", "Line 3\n"]

with ("example.txt", "w") as
.writelines(lines)

with ("example.txt", "r") as
content = .read()
print(content)

Line 1
Line 2
Line 3

Handling File Errors

If there’s an issue with the file (e.g., permission errors), Python will raise an exception. You
can handle these errors using a try/except block.

Example:

try:
with open("test.txt", "w") as file:
file.write("Hello, World!")
except IOError:
print("Error: Could not write to the file.")

Error: Could not write to the file.

Example Program

Working with Writing Files

Writing to a new file

with open("example.txt", "w") as file:
file.write("Hello, World!\n")
file.write("This is a new line.")

Appending to an existing file
with open("example.txt", "a") as file:
file.write("\nThis line is appended.")

Writing multiple lines

lines = ["Line 1\n", "Line 2\n", "Line 3\n"]

with open("example.txt", "w") as file:
file.writelines(lines)

Handling file errors
try:
with open("example.txt", "w") as file:
file.write("Hello, World!")
except IOError:
print("Error: Could not write to the file.")

Reading the file to verify its contents
with open("example.txt", "r") as file:
content = file.read()
print("File content:")
print(content)

File content:
Hello, World!

23. Modules & Pip

Modules and pip are essential tools in Python for organizing code and managing external
libraries. Modules allow you to reuse code across multiple programs, while pip is the
package installer for Python, enabling you to install and manage third-party libraries.

What Are Modules?

A module is a file containing Python code (functions, classes, or variables) that can be
imported and used in other programs. Modules help you organize your code into reusable
components.

Creating a Module

To create a module, simply save your Python code in a .py file. For example, save the
following code in a file named mymodule.py :

def (name) :
return f"Hello, {name}!"

def (a, b):
return a + b

Importing a Module

You can import a module using the import statement. Once imported, you can access its
functions, classes, or variables using the dot notation.

Example:

import mymodule

print(mymodule.greet("Alice"))
print(mymodule.add(3, 5))

Hello, Alice!
8

Importing Specific Functions

You can import specific functions or variables from a module using the from ... import
statement.

Example:

from mymodule import greet, add

print(greet("Bob"))
print(add(2, 4))

Hello, Bob!
6

Renaming Imports

You can rename a module or function when importing it using the as keyword.

Example:

import mymodule as mm

print(mm.greet("Charlie"))

Hello, Charlie!

Standard Library Modules

Python comes with a rich set of built-in modules, known as the Standard Library. These
modules provide functionality for tasks like math, file handling, and working with dates.

Example:

import math

print(math.sqrt(16))

4.o

What is Pip?

Pip is the package installer for Python. It allows you to install, upgrade, and manage third-
party libraries and packages from the Python Package Index (PyPlI).

Installing Packages with Pip

To install a package, use the following command in your terminal or command prompt:

pip package_name
Example:
pip requests

Using Installed Packages
Once a package is installed, you can import and use it in your Python programs.

Example:

import requests

response = requests.get("https://www.example.com")
print(response.status_code)

200

Listing Installed Packages

To see a list of installed packages, use the following command:

pip list

Upgrading Packages

To upgrade an installed package to the latest version, use:

pip ——upgrade package_name
Example:
pip —-—upgrade requests

Uninstalling Packages

To uninstall a package, use:
pip uninstall package_name
Example:

pip uninstall requests

Creating a Requirements File

A requirements.txt file lists all the dependencies for a project. You can generate this file
using:

pip freeze > requirements.txt
To install all dependencies from a requirements.txt file, use:

pip -r requirements.txt

Example Program

import mymodule

print(mymodule.greet("Alice"))
print(mymodule.add(3, 5))

from mymodule import greet, add

print(greet("Bob"))
print(add(2, 4))

import mymodule as mm

print(mm.greet("Charlie"))

import math

print(math.sqrt(16))

import requests

response = requests.get("https://www.example.com")
print(response.status_code)

Hello, Alice!

8

Hello, Bob!

6

Hello, Charlie!
4.0

200

24. Classes & Objects

Classes and objects are the foundation of object-oriented programming (OOP) in
Python. A class is a blueprint for creating objects, and an object is an instance of a class.
OOP allows you to structure your code in a way that models real-world entities and their
relationships.

What is a Class?

A class is a template or blueprint that defines the properties (attributes) and behaviors
(methods) of objects. It encapsulates data and functionality into a single unit.

Defining a Class

To define a class, use the class keyword followed by the class name. By convention, class
names are written in CamelCase.

Syntax:
class
Example:
class
species = "Canis familiaris"
def (self, name, age):
self.name = name
self.age = age
def (self):

return f"{self.name} says woof!"

What is an Object?

An object is an instance of a class. You can create multiple objects from a single class, each
with its own unique attributes.

Creating Objects

To create an object, call the class name as if it were a function. This invokes the
method (constructor) to initialize the object.

_init__

Example:

dogl
dog2

Dog("Buddy", 3)
Dog("Max", 5)

print(dogl.name)
print(dog2.age)

print(dogl.bark())

Buddy
5
Buddy says woof!

The self Parameter

The self parameter refers to the current instance of the class. It is used to access instance
attributes and methods within the class.

Class Attributes vs. Instance Attributes

Class attributes: Shared by all instances of the class.

Instance attributes: Unique to each instance.

Example:

print(dogl.species)
print(dog2.species)

dogl.species = "Golden Retriever"
print(dogl.species)
print(dog2.species)

Canis familiaris
Canis familiaris
Golden Retriever
Canis familiaris

Adding Methods to a Class

Methods are functions defined inside a class. They define the behavior of objects.

Example:
class

def (self, name, age):
self.name = name
self.age = age

def (self):
return f"{self.name} says woof!"

def (self):

return f"{self.name} is {self.age} years old."

dog = Dog("Buddy", 3)

print(dog.bark())
print(dog.get_age())

Buddy says woof!
Buddy is 3 years old.

The __str__ Method

The __str__ method is a special method that returns a string representation of the object. It
is called when you use the print() function or str() on the object.

Example:

class
def (self, name, age):
self.name = name
self.age = age

def (self):
return f"{self.name} is {self.age} years old."

dog = Dog("Buddy", 3)

print(dog)

Buddy is 3 years old.

Inheritance

Inheritance allows you to create a new class (child class) that inherits attributes and
methods from an existing class (parent class). This promotes code reuse and modularity.

Example:
class :
def (self, name):
self.name = name
def (self):
return f"{self.name} makes a sound."
class (Animal):
def (self):

return f"{self.name} says woof!"

animal = Animal("Generic Animal™)
dog = Dog("Buddy")

print(animal.speak())
print(dog.speak())

Generic Animal makes a sound.
Buddy says woof!

Example Program

class Dog:
Class attribute
species = "Canis familiaris"

Constructor

def __init__(self, name, age):
self.name = name
self.age = age

Instance method
def bark(self):
return f"{self.name} says woof!"

Special method for string representation
def __str__(self):

return f"{self.name} is {self.age} years old."

Create objects
dogl = Dog("Buddy", 3)
dog2 = Dog("Max", 5)

Access attributes
print(dogl.name) # Output: Buddy
print(dog2.age) # Output: 5

Call methods
print(dogl.bark()) # Output: Buddy says woof!
print(dog2.bark()) # Output: Max says woof!

Print objects
print(dogl) # Output: Buddy is 3 years old.
print(dog2) # Output: Max is 5 years old.

Inheritance example
class Animal:
def __init__(self, name):
self.name = name

def speak(self):
return f"{self.name} makes a sound."

class Dog(Animal):
def speak(self):
return f"{self.name} says woof!"

Create objects
animal = Animal("Generic Animal")

dog = Dog("Buddy")

Call methods

print(animal.speak())
print(dog.speak())

Buddy

5

Buddy says woof!

Max says woof!

Buddy is 3 years old.

Max is 5 years old.

Generic Animal makes a sound.
Buddy says woof!

25. Object Functions

Object functions (also called methods) are functions defined within a class that operate on
the attributes of an object. They define the behavior of objects and allow you to perform
actions or computations using the object's data.

Defining Object Functions

Object functions are defined inside a class and take self as their first parameter. The self
parameter refers to the instance of the class and allows you to access its attributes and
other methods.

Syntax:
class
def (self, parameters):
Example:
class :
def (self, name, age):
self.name = name
self.age = age
def (self):

return f"{self.name} says woof!"

def (self):
return f"{self.name} is {self.age} years old."

Calling Object Functions
To call an object function, use the dot notation on an instance of the class.

Example:

dog = Dog("Buddy", 3)

print(dog.bark())
print(dog.get_age())

Buddy says woof!
Buddy is 3 years old.

Modifying Object Attributes
Object functions can modify the attributes of an object.

Example:

class
def (self, name, age):
self.name = name
self.age = age

def (self):
self.age += 1
return f"{self.name} is now {self.age} years old."

dog = Dog("Buddy", 3)

print(dog.birthday())
print(dog.birthday())

Buddy is now 4 years old.
Buddy is now 5 years old.

Using Object Functions with Parameters
Object functions can take additional parameters to perform more complex operations.

Example:

class :
def (self, initial_value=0):
self.value = initial_value

def (self, number):
self.value += number
return self.value

def (self, number):
self.value —= number
return self.value

calc = Calculator(10)

print(calc.add(5))
print(calc.subtract(3))

15
12

Special Object Functions

Python provides special object functions (also called magic methods or dunder methods)
that allow you to define how objects behave in certain situations, such as addition,
comparison, or string representation.

Common Special Methods:

str__ : Returns a string representation of the object (used by print() and str()).

__len__: Returns the length of the object (used by 1en()).

add__ : Defines behavior for the + operator.

—-eq__: Defines behavior for the == operator.

Example:

class
def (self, name, age):
self.name = name
self.age = age

def (self):
return f"{self.name} is {self.age} years old."

def (self, other):
return Dog(f"{self.name} and {other.name}", self.age + other.age)

dogl = Dog("Buddy", 3)
dog2 = Dog("Max", 5)
print(dogl)

combined_dog = dogl + dog2
print(combined_dog)

Buddy is 3 years old.
Buddy and Max is 8 years old.

Example Program

class
def (self, name, age):
self.name = name
self.age = age

def (self):
return f"{self.name} says woof!"

Object function to update age
def birthday(self):
self.age += 1

return f"{self.name} is now {self.age} years old."

Special method for string representation

def __str__(self):

return f"{self.name} is {self.age} years old."

Create an object
dog = Dog("Buddy", 3)

Call object functions

print(dog.bark()) # Output: Buddy
print(dog.birthday()) # Output: Buddy
print(dog.birthday()) # Output: Buddy

Print the object
print(dog) # Output: Buddy is 5 years

says woof!
is now 4 years old.
is now 5 years old.

old.

Using object functions with parameters

class Calculator:

def __init__(self, initial_value=0):

self.value = initial_value

def add(self, number):
self.value += number
return self.value

def subtract(self, number):
self.value —= number
return self.value

Create an object
calc = Calculator(10)

Call object functions with parameters

print(calc.add(5)) # Output: 15
print(calc.subtract(3)) # Output: 12

Special object functions
class Dog:
def __init__(self, name, age):
self.name = name
self.age = age

def __str__(self):

return f"{self.name} is {self.age} years old."

def __add__(self, other):

return Dog(f"{self.name} and {other.name}", self.age + other.age)

dogl = Dog("Buddy", 3)
dog2 = Dog("Max", 5)
print(dogl)

combined_dog = dogl + dog2
print(combined_dog)

Buddy says woof!

Buddy is now 4 years old.
Buddy is now 5 years old.
Buddy is 5 years old.

15

12

Buddy is 3 years old.

Buddy and Max is 8 years old.

26. Inheritance

Inheritance is a fundamental concept in object-oriented programming (OOP) that allows you
to create a new class (called a child class or subclass) based on an existing class (called a
parent class or superclass). The child class inherits attributes and methods from the parent
class, promoting code reuse and modularity.

Why Use Inheritance?

Code Reuse: Avoid duplicating code by inheriting common functionality from a parent
class.

Modularity: Organize code into logical hierarchies.

Extensibility: Add or modify functionality in the child class without affecting the parent
class.

Syntax of Inheritance

To create a child class, specify the parent class in parentheses after the child class name.

Syntax:

class

class (ParentClass):

Example of Inheritance

Here’s a simple example where a Dog class inherits from an Animal class:

class :
def (self, name):
self.name = name

def (self):
return f"{self.name} makes a sound."

class (Animal):
def (self):
return f"{self.name} says woof!"

animal = Animal("Generic Animal")
dog = Dog("Buddy")

print(animal.speak())
print(dog.speak())

Generic Animal makes a sound.
Buddy says woof!

The Dog class inherits the __init__ method and the name attribute from the Animal
class.

The Dog class overrides the speak method to provide its own implementation.

The super() Function

The super() function allows you to call methods from the parent class. This is useful when
you want to extend the functionality of a parent method in the child class.

Example:
class :
def (self, name):
self.name = name
def (self):
return f"{self.name} makes a sound."
class (Animal):
def (self, name, breed):
() .__init__Cname)
self.breed = breed
def (self):

return f"{self.name} says woof!"

dog = Dog("Buddy", "Golden Retriever")

print(dog.name)
print(dog.breed)
print(dog.speak())

Buddy
Golden Retriever
Buddy says woof!

Method Overriding

When a child class defines a method with the same name as a method in the parent class,
the child class’s method overrides the parent class’s method.

Example:
class :
def (self):
return "Animal sound"
class (Animal):

def (self):

return "Woof!"

animal = Animal()
dog = Dog()

print(animal.speak())

print(dog.speak())

Animal sound
Woof!

Adding New Methods in the Child Class
You can add new methods in the child class that are not present in the parent class.

Example:

class :
def (self, name):
self.name = name

def (self):
return f"{self.name} makes a sound."

class (Animal):
def (self):
return f"{self.name} fetches the ball."

dog = Dog("Buddy")

print(dog.speak())
print(dog.fetch())

Buddy makes a sound.
Buddy fetches the ball.

Multi-Level Inheritance

In multi-level inheritance, a child class inherits from another child class, creating a chain of
inheritance.

Example:
class :
def (self, name):
self.name = name
def (self):
return f"{self.name} makes a sound."
class (Animal):
def (self):
return f"{self.name} says woof!"
class (Dog):
def (self):

return f"{self.name} is playing."

puppy = Puppy("Max")

print(puppy.speak())
print(puppy.play())

Max says woof!
Max is playing.

Multiple Inheritance

Python supports multiple inheritance, where a child class can inherit from more than one
parent class.

Example:
class :
def (self, name):
self.name = name
def (self):

return f"{self.name} makes a sound."

class

def

class
def

(self):
return f"{self.name} is playing."

(Animal, Pet):
(self):
return f"{self.name} says woof!"

dog = Dog("Buddy")

print(dog.speak())
print(dog.play())

Buddy says woof!
Buddy is playing.

Example Program

class
def

def

class
def

def

def

animal =

(self, name):
self.name = name

(self):
return f"{self.name} makes a sound."

(Animal):
(self, name, breed):
() .__init__(name)
self.breed = breed

(self):
return f"{self.name} says woof!"

(self):
return f"{self.name} fetches the ball."

Animal("Generic Animal")

dog = Dog("Buddy", "Golden Retriever")

print(animal.speak())
print(dog.speak())
print(dog.fetch())

class (Dog):
def (self):
return f"{self.name} is playing."

puppy = Puppy("Max", "Labrador")
print(puppy.speak())
print(puppy.play())

class
def (self):
return f"{self.name} is playing."

class (Animal, Pet):
def (self):
return f"{self.name} says meow!"

cat = Cat("Whiskers")
print(cat.speak())
print(cat.play())

Generic Animal makes a sound.
Buddy says woof!

Buddy fetches the ball.

Max says woof!

Max is playing.

Whiskers says meow!

Whiskers is playing.

intermediate Python

1. Intro

The Intermediate Python section builds on the foundational knowledge covered in the
Beginner Python section. Here, we’ll explore more advanced concepts and techniques that
will help you write cleaner, more efficient, and more professional Python code.

What to Expect in Intermediate Python

In this section, you’ll learn about:

Advanced data structures like sets, collections, and itertools.

Powerful Python features like lambda functions, decorators, and generators.
Techniques for handling exceptions and errors and logging.

Working with JSON and generating random numbers.

Understanding function arguments and the asterisk (*) operator.

Concepts like shallow vs deep copying and context managers.

Exploring multithreading and multiprocessing for concurrent programming.

By the end of this section, you'll have a deeper understanding of Python and be equipped to
tackle more complex programming challenges.

Why Learn Intermediate Python?

Write Cleaner Code: Learn techniques to make your code more readable, modular, and
maintainable.

Improve Efficiency: Use advanced features like generators and decorators to optimize
your code.

Handle Real-World Scenarios: Master error handling, logging, and working with
external data formats like JSON.

Unlock Python’s Full Potential: Explore Python’s powerful libraries and tools for tasks
like multithreading and multiprocessing.

How to Use This Section

Follow Along: Type out the examples and experiment with them to solidify your
understanding.

Practice: Try the exercises and challenges provided at the end of each topic.

Explore Further: Use the official Python documentation and online resources to dive
deeper into topics that interest you.

Example: A Taste of Intermediate Python

Here’s a quick example to give you a taste of what’s to come. We'll use a lambda function
and the map() function to square a list of numbers:

numbers = [1, 2, 3, 4, 5]
squared_numbers = (map(lambda x: x ** 2, numbers))

print(squared_numbers)

[1, 4, 9, 16, 25]

Lambda functions: Anonymous functions defined using the lambda keyword.

map(): Applies a function to all items in an iterable (e.g., a list).

2. Lists

Lists are one of Python’s most versatile and widely used data structures. In the Beginner
Python section, we covered the basics of lists. Now, we’ll dive deeper into advanced list
operations, comprehensions, and performance considerations.

Recap: What Are Lists?

A list is an ordered, mutable collection of items. Lists can store elements of different data
types and are defined using square brackets [] .

Example:

fruits = ["apple", "banana", "cherry"]
numbers = [1, 2, 3, 4, 5]
mixed = [1, "apple", 3.14, Truel

Advanced List Operations

List Comprehensions
List comprehensions provide a concise way to create lists. They are faster and more
readable than traditional loops.

Syntax:

[expression for item in iterable if condition]

Example:
squares = [x **x 2 for x in (1, 6)]
print(squares)
evens = [x for x in (10) if x % 2 == 0]
print(evens)

[1, 4, 9, 16, 25]
[0, 2, 4, 6, 8]

Nested List Comprehensions
You can use nested list comprehensions to create lists of lists (2D lists).

Example:
matrix = [[i + j for j in (3)] for i in (3)1]
print(matrix)

[[e, 1, 21, [1, 2, 31, [2, 3, u]l]
Slicing with Steps

Slicing allows you to extract a portion of a list. You can also specify a step to skip
elements.

Example:

numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

print(numbers[::2])

print(numbers([::-1])

[0, 2, 4, 6, 8]
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

List Unpacking
You can unpack a list into individual variables.

Example:

fruits = ["apple", "banana", "cherry"]
a, b, ¢ = fruits
print(a, b, c)

apple banana cherry

Zip and Unzip Lists

The zip() function combines multiple lists into a list of tuples. You can also unzip them
back into separate lists.

Example:

names = ["Alice", "Bob", "Charlie"]
ages = [25, 30, 35]

zipped = (zip(names, ages))
print(zipped)
names_unzipped, ages_unzipped = (*zipped)

print(names_unzipped)
print(ages_unzipped)

[('Alice', 25), ('Bob', 30), ('Charlie', 35)]
('Alice', 'Bob', 'Charlie')
(25, 30, 35)

List Methods

Python provides several built-in methods for working with lists. Here are some advanced
ones:

extend() : Adds multiple elements to the end of a list.
insert() : Inserts an element at a specific index.

pop() : Removes and returns an element at a specific index.
remove() : Removes the first occurrence of a value.

index() : Returns the index of the first occurrence of a value.
count() : Returns the number of occurrences of a value.
sort() : Sorts the list in place.

reverse() : Reverses the list in place.

Example:

numbers = [3, 1, 4, 1, 5, 9]

numbers.sort()
print(numbers)

numbers.reverse()
print(numbers)

[1, 1, 3, 4, 5, 9]
[9, 5, 4, 3, 1, 1]

Performance Considerations

Time Complexity: Be aware of the time complexity of list operations. For example:
Appending: 0(1)
Inserting/Deleting: 0(n)
Searching: 0(n)
Memory Usage: Lists can consume a lot of memory for large datasets. Consider using
generators or arrays (from the array module) for memory efficiency.

Example Program

squares = [x ** 2 for x in (1, 6)1]
print("Squares:", squares)

matrix = [[i + j for j in (3)] for i in (3)1
print("Matrix:", matrix)

numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
print("Every second element:", numbers[::2])
print("Reversed list:", numbers([::-1])

fruits = ["apple", "banana", "cherry"]
a, b, ¢ = fruits
print("Unpacked:", a, b, c)

names = ["Alice", "Bob", "Charlie"]
ages = [25, 30, 35]
zipped = (zip(names, ages))

print("Zipped:", zipped)

names_unzipped, ages_unzipped = (*zipped)
print("Unzipped names:", names_unzipped)

print("Unzipped ages:", ages_unzipped)

numbers = [3, 1, 4, 1, 5, 9]
numbers . sort()

print("Sorted:", numbers)
numbers.reverse()
print("Reversed:", numbers)

Squares: [1, 4, 9, 16, 25]

Matrix: [[e, 1, 2], [1, 2, 31, [2, 3, ul]

Every second element: [0, 2, 4, 6, 8]

Reversed list: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
Unpacked: apple banana cherry

Zipped: [('Alice', 25), ('Bob', 30), ('Charlie', 35)]
Unzipped names: ('Alice', 'Bob', 'Charlie')

Unzipped ages: (25, 30, 35)

Sorted: [1, 1, 3, 4, 5, 9]

Reversed: [9, 5, 4, 3, 1, 1]

3. Tuples

Tuples are another fundamental data structure in Python. They are similar to lists but with
one key difference: tuples are immutable. This means that once a tuple is created, its
elements cannot be changed, added, or removed. Tuples are often used for fixed collections
of items, such as coordinates or database records.

What Are Tuples?

Atuple is an ordered, immutable collection of items. Tuples are defined using parentheses
Q.

Example:

coordinates = (10.0, 20.0)
fruits = ("apple", "banana", "cherry")
mixed = (1, "apple", 3.14, True)

Creating Tuples

You can create a tuple by enclosing elements in parentheses () . If a tuple has only one
element, you must include a trailing comma to distinguish it from a regular value.

Example:

single = (42,)

multiple = (1, 2, 3)

Accessing Tuple Elements

You can access tuple elements using indexing and slicing, just like lists.

Example:
fruits = ("apple", "banana", "cherry")
print(fruits[0])

print(fruits[-11)

print(fruits[1:3])

apple
cherry
('banana', 'cherry')

Tuples Are Immutable

Once a tuple is created, you cannot modify its elements. Attempting to do so will raise a

TypeError .
Example:
fruits = ("apple", "banana", "cherry")
fruits[0] = "orange"
TypeError Traceback (most recent call last)

Cell In[194], line 4

1 fruits = ("apple", "banana", "cherry")
3 # This will raise an error
-——=> I fruits[0] = "orange"

TypeError: 'tuple' object does not support item assignment

Tuple Operations

Concatenation: Combine two tuples using the + operator.

tuplel = (1, 2, 3)

tuple2 = (4, 5, 6)
combined = tuplel + tuple2
print(combined)

(1, 2, 3, 4, 5, 6)

Repetition: Repeat a tuple using the * operator.

repeated = (1, 2) * 3
print(repeated)

(, 2,1, 2,1, 2)
Membership: Check if an element exists in a tuple using the in keyword.

fruits = ("apple", "banana", "cherry")
print("banana" in fruits)

True

Length: Get the number of elements in a tuple using the len() function.

print(len(fruits))

Tuple Unpacking

You can unpack a tuple into individual variables. This is useful for assigning multiple values
at once.

Example:

coordinates = (10.0, 20.0)
X, Yy = coordinates
print(x, y)

10.0 20.0

Using Tuples as Dictionary Keys
Because tuples are immutable, they can be used as keys in dictionaries, unlike lists.

Example:

location = {
(40.7128, -74.0060): "New York",
(34.60522, -118.2437): "Los Angeles"

print(location[(40.7128, -74.0060)])

New York

Tuple Methods

Tuples have only two built-in methods:

count() : Returns the number of occurrences of a value.

numbers = (1, 2, 3, 1, 2, 1)
print(numbers.count(1))

index() : Returns the index of the first occurrence of a value.

print(numbers.index(2))

When to Use Tuples

Use tuples when you need an immutable collection of items.
Use tuples for fixed data, such as coordinates, database records, or function arguments.
Use tuples as dictionary keys.

Example Program

coordinates = (10.0, 20.0)
fruits = ("apple", "banana", "cherry")
single = (42,)

Accessing elements

print("First fruit:", fruits[0]) # Output: apple

print("Last fruit:", fruits[-1]) # Output: cherry

print("Sliced fruits:", fruits[1:3]) # Output: ('banana', 'cherry')

Tuple operations

tuplel = (1, 2, 3)

tuple2 = (4, 5, 6)

combined = tuplel + tuple2

print("Combined tuple:", combined) # Output: (1, 2, 3, 4, 5, 6)

repeated = (1, 2) = 3
print("Repeated tuple:", repeated) # Output: (1, 2, 1, 2, 1, 2)

Membership
print("Is 'banana' in fruits?", "banana" in fruits) # Output: True

Length
print("Number of fruits:", len(fruits)) # Output: 3

Tuple unpacking
X, y = coordinates
print("Coordinates:", x, y) # Output: 10.0 20.0

Using tuples as dictionary keys
location = {
(40.7128, -74.0060): "New York",
(34.0522, -118.2437): "Los Angeles"
}
print("Location:", location[(40.7128, -7u4.0060)]) # Output: New York

Tuple methods

numbers = (1, 2, 3, 1, 2, 1)

print("Count of 1:", numbers.count(l)) # Output: 3
print("Index of 2:", numbers.index(2)) # Output: 1

First fruit: apple

Last fruit: cherry

Sliced fruits: ('banana', 'cherry')
Combined tuple: (1, 2, 3, 4, 5, 6)
Repeated tuple: (1, 2, 1, 2, 1, 2)
Is 'banana' in fruits? True

Number of fruits: 3

Coordinates: 10.0 20.0

Location: New York

Count of 1: 3

Index of 2: 1

4. Dictionaries

Dictionaries are one of Python’s most powerful and versatile data structures. They store data
in key-value pairs, allowing you to quickly retrieve values based on their keys. Dictionaries
are unordered (in Python versions before 3.7), mutable, and optimized for fast lookups.

What Are Dictionaries?

A dictionary is a collection of key-value pairs, where each key is unique. Dictionaries are
defined using curly braces {} orthe dict() constructor.

Example:
person = {
"name": "Alice",
"age": 25,
"city": "New York"
}
person = (name="Alice", age=25, city="New York")

Accessing Dictionary Values

You can access values in a dictionary using their keys. If the key does not exist, Python will
raise a KeyError . To avoid this, you can use the get() method, which returns None (or a
default value) if the key is not found.

Example:

person = {
"name": "Alice",
"age": 25,
"city": "New York"

print(person["name"])
print(person.get("age"))

print(person.get("country", "Unknown"))

Alice
25
Unknown

Adding or Updating Dictionary Entries
You can add a new key-value pair or update an existing one by assigning a value to a key.

Example:

person = {
"name": "Alice",
"age": 25,
"city": "New York"

person["country"] = "USA"

person["age"] = 26

print(person)

{'name': 'Alice', 'age': 26, 'city': 'New York',6 ‘'country': 'USA'}

Removing Dictionary Entries
You can remove key-value pairs using:

del : Deletes the key-value pair.

del person["city"]
print(person)

{'name': 'Alice', 'age': 26, 'country': 'USA'}

pop() : Removes the key-value pair and returns the value.

age = person.pop("age")
print(age)
print(person)

26
{'name': 'Alice', 'country': 'USA'}

popitem() : Removes and returns the last inserted key-value pair (Python 3.7+).

last_item = person.popitem()
print(last_item)
print(person)

('country', 'USA')
{'name': 'Alice'}

clear() : Removes all key-value pairs from the dictionary.

person.clear()
print(person)

i}

Dictionary Methods
Here are some commonly used dictionary methods:

keys() : Returns a list of all keys.
print(person.keys())
dict_keys(['name', 'age', 'city', 'country'])
values() : Returns a list of all values.

print(person.values())

dict_values(['Alice', 26, 'New York',6 'USA'])

items() : Returns a list of key-value pairs as tuples.

print(person.items())

dict_items([('name', 'Alice'), ('age', 26), ('city', 'New York'),
('country', 'USA')])

update() : Merges another dictionary into the current one.
person.update({"country": "USA", "age": 26})
print(person)
{'name': 'Alice', 'age': 26, 'city': 'New York',6 ‘'country': 'USA'}
copy () : Returns a shallow copy of the dictionary.

person_copy = person.copy()
print(person_copy)

{'name': 'Alice', 'age': 26, 'city': 'New York',6 ‘'country': 'USA'}

Dictionary Comprehensions

Similar to list comprehensions, dictionary comprehensions allow you to create dictionaries in

a concise way.

Syntax:

{key_expression: value_expression for item in iterable}

Example:

squares = {x: x ** 2 for x in (1, 6)}
print(squares)

{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Nested Dictionaries

Dictionaries can contain other dictionaries, allowing you to create complex data structures.

Example:

students = {
"Alice": {"age": 25, "grade": "A"},
IlBobll: {uagen: 22, "gra.de": "B"},
"Charlie": {"age": 23, "grade": "C"}

print(students["Alice"]["age"])

25

Example Program

person = {
"name": "Alice",
"age": 25,
"city": "New York"
}
print("Name:", person["name"])

print("Age:", person.get("age"))

person["country"] = "USA"
person["age"] = 26

del person["city"]
age = person.pop("age")
last_item = person.popitem()

print("Keys:", person.keys())

print("Values:", person.values())
print("Items:", person.items())

squares = {x: X ** 2 for x in (1, 6)}
print("Squares:", squares)

students = {

"Alice": {"age": 25, "grade": "A"},
"Bob": {"age": 22, "grade": "B"},
"Charlie": {"age": 23, "grade": "C"}

}

print("Alice's age:", students["Alice"]["age"])

Name: Alice

Age: 25

Keys: dict_keys(['name'])

Values: dict_values(['Alice'])

Items: dict_items([('name', 'Alice')])
Squares: {1: 1, 2: 4, 3: 9, u: 16, 5: 25}
Alice's age: 25

5. Sets

A set is an unordered collection of unique elements. Sets are useful for tasks that involve

membership testing, removing duplicates, and performing mathematical operations like

unions, intersections, and differences.

What Are Sets?

Sets are defined using curly braces {} orthe set() constructor.
Sets do not allow duplicate elements. If you try to add a duplicate, it will be ignored.
Sets are unordered, meaning the elements are not stored in any specific order.

Example:

fruits = {"apple", "banana", "cherry"}

numbers = ([1, 2, 3, 4, 51D

Creating Sets

You can create a set by enclosing elements in curly braces {} or by passing an iterable
(e.g., alist) to the set() constructor.

Example:
fruits = {"apple", "banana", "cherry"}
numbers = ([1, 2, 3, 4, 51)
empty_set = QO

Adding and Removing Elements

Adding Elements: Use the add() method to add a single element or the update()
method to add multiple elements.

fruits = {"apple", "banana", "cherry"}

fruits.add("orange")

fruits.update(["mango", "grape"])

print(fruits)

{'orange', 'cherry', 'apple', 'banana', 'mango', ‘'grape'}

Removing Elements:
remove() : Removes a specific element. Raises a KeyError if the element is not
found.

fruits.remove("banana")
print(fruits)
{'orange', 'cherry', 'apple', 'mango', 'grape'}

discard() : Removes a specific element if it exists. Does not raise an error if the
element is not found.

fruits.discard("banana")
clear() : Removes all elements from the set.

fruits.clear()
print(fruits)

set()

Set Operations

Sets support mathematical operations like unions, intersections, differences, and symmetric
differences.

Union (|): Combines elements from two sets.

setl = {1, 2, 3}
set2 = {3, 4, 5%
union_set = setl | set2
print(union_set)

{1, 2, 3, 4, 5}
Intersection (&): Returns elements common to both sets.

intersection_set = setl & set2
print(intersection_set)

13}

Difference (-): Returns elements in the first set that are not in the second set.

difference_set = setl - set2
print(difference_set)

{1, 2%

Symmetric Difference ("): Returns elements that are in either set but not in both.

symmetric_difference_set = setl " set2
print(symmetric_difference_set)

{1, 2, 4, 5}

Set Methods

Here are some commonly used set methods:

len() : Returns the number of elements in the set.

print(len(fruits))

in : Checks if an element exists in the set.

print("apple" in fruits)

True

issubset() : Checks if one set is a subset of another.

setl = {1, 2}
set2 = {1, 2, 3, u}
print(setl.issubset(set2))

True

issuperset() : Checks if one set is a superset of another.

print(set2.issuperset(setl))

True
isdisjoint() : Checks if two sets have no common elements.

set3 = {5, 6}
print(setl.isdisjoint(set3))

True

Set Comprehensions

Similar to list comprehensions, set comprehensions allow you to create sets in a concise
way.

Syntax:

{expression for item in iterable if condition}

Example:
squares = {x ** 2 for x in (1, 6)}
print(squares)

{1, 4, 9, 16, 25}

Example Program

fruits = {"apple", "banana", "cherry"}
numbers = ([1, 2, 3, 4, 51)

fruits.add("orange")
fruits.update(["mango", "grape"l])

fruits.remove("banana")
fruits.discard("banana")
removed_fruit = fruits.pop()
fruits.clear()

setl = {1, 2, 3}

set2 = {3, 4, 5%

union_set = setl | set2
intersection_set = setl & set2
difference_set = setl - set2
symmetric_difference_set = setl " set2

print(len(fruits))
print("apple" in fruits)
print(setl.issubset(set2))
print(set2.issuperset(setl))
print(setl.isdisjoint(set2))

squares = {x ** 2 for x in (1, 6)}
print("Squares:", squares)

0

False

False

False

False

Squares: {1, 4, 9, 16, 25}

6. Strings

Strings are one of the most commonly used data types in Python. They are used to
represent text and are defined using single quotes ' ', double quotes " ", or triple quotes
rrr v or nemo e 0 this section, we’ll explore advanced string operations, formatting,

and manipulation techniques.

What Are Strings?

A string is a sequence of characters. Strings are immutable, meaning once a string is
created, it cannot be changed. However, you can create new strings based on existing ones.

Example:
messagel = 'Hello, World!"
message2 = "Python is fun!"
message3 = """This is a

multi-line string."""

Accessing String Characters

You can access individual characters in a string using indexing. Python uses zero-based
indexing, meaning the first character has an index of o .

Example:

text = "Python"

print(text[0])
print(text[3])

print(text[-1])

String Slicing
You can extract a substring using slicing. The syntax is [start:stop:step] .

Example:

text = "Python Programming"

print(text[0:6])

print(text[7:18])

print(text[::2])

Python
Programming
Pto rgamn

String Methods

Python provides many built-in methods for working with strings. Here are some commonly
used ones:

upper() : Converts the string to uppercase.

print("hello" .upper())

HELLO
lower() : Converts the string to lowercase.

print("HELLO".lower())

hello
strip() : Removes leading and trailing whitespace.
print(" hello ".strip())
hello

replace() : Replaces a substring with another substring.

print("hello world".replace("world", "Python"))

hello Python

split() : Splits the string into a list of substrings based on a delimiter.

print("apple,banana,cherry".split(","))

['apple', 'banana', 'cherry'l]

join() : Joins a list of strings into a single string using a delimiter.

print(", ".join(["apple", "banana", "cherry"]))

apple, banana, cherry

find() : Returns the index of the first occurrence of a substring. Returns -1 if not
found.

print("hello world".find("world"))

count() : Returns the number of occurrences of a substring.

print("hello world".count("1"))

startswith() : Checks if the string starts with a specific substring.

print("hello world".startswith("hello"))

True

endswith() : Checks if the string ends with a specific substring.

print("hello world".endswith("world"))

True

String Formatting

Python provides several ways to format strings:

f-strings (Python 3.6+): Embed expressions inside string literals.

name = "Alice"
age = 25
print(f"My name is {name} and I am {age} years old.")

My name is Alice and I am 25 years old.
format() method: Insert values into placeholders {}.

print("My name is {} and I am {} years old.". (name, age))

My name is Alice and I am 25 years old.
% operator (older style):

print("My name is %s and I am %d years old." % (name, age))

My name is Alice and I am 25 years old.

Escape Characters
Escape characters are used to include special characters in strings:

\n : Newline

\t: Tab

\\ : Backslash

\" : Double quote
\' : Single quote

Example:

print("Hello\nWorld")

Hello
World

Raw Strings

Raw strings ignore escape characters and treat backslashes as literal characters. They are
prefixed with an r.

Example:

print(r"C:\Users\Alice\Documents")

C:\Users\Alice\Documents

String Membership
You can check if a substring exists in a string using the in keyword.

Example:

text = "Python is fun"
print("fun" in text)

True

Example Program

messagel = 'Hello, World!"
message2 = "Python is fun!"

message3 = """This is a
multi-line string."""

Accessing characters

text = "Python"

print("First character:", text[0]) # Output: P
print("Last character:", text[-1]) # Output: n

String slicing
print("Sliced string:", text[0:4]) # Output: Pyth
print("Every second character:", text[::2]) # Output: Pto

String methods

print("Uppercase:", "hello".upper()) # Output: HELLO

print("Lowercase:", "HELLO".lower()) # Output: hello

print("Stripped:", " hello ".strip()) # Output: hello

print("Replaced:", "hello world".replace("world", "Python")) # Output:
hello Python

print("Split:", "apple,banana,cherry".split(",")) # Output: ['apple’,
'banana', 'cherry']

print("Joined:", ", ".join(["apple", "banana", "cherry"])) # Output: apple,
banana, cherry

print("Found at index:", "hello world".find("world")) # Output: 6
print("Count of 'L':", "hello world".count("1")) # Output: 3

print("Starts with 'hello':", "hello world".startswith("hello")) # Output:
True

print("Ends with 'world':", "hello world".endswith("world")) # Output: True

String formatting

name = "Alice"

age = 25

print(f"My name is {name} and I am {age} years old.") # Output: My name is
Alice and I am 25 years old.

print("My name is {} and I am {} years old.".format(name, age)) # Output:
My name is Alice and I am 25 years old.

print("My name is %s and I am %d years old." % (name, age)) # Output: My
name is Alice and I am 25 years old.

Escape characters
print("Hello\nWorld") # Output: Hello
World

Raw strings
print(r"C:\Users\Alice\Documents") # Output: C:\Users\Alice\Documents

String membership
print("Is 'fun' in the text?", "fun" in "Python is fun") # Output: True

First character: P

Last character: n

Sliced string: Pyth

Every second character: Pto

Uppercase: HELLO

Lowercase: hello

Stripped: hello

Replaced: hello Python

Split: ['apple', 'banana', 'cherry']
Joined: apple, banana, cherry

Found at index: 6

Count of 'l': 3

Starts with 'hello': True

Ends with 'world': True

My name is Alice and I am 25 years old.
My name is Alice and I am 25 years old.
My name is Alice and I am 25 years old.
Hello

World

C:\Users\Alice\Documents

Is 'fun' in the text? True

7. Collections

The collections module in Python provides specialized container data types that are
alternatives to the built-in types like list, tuple, dict, and set . These data types are
optimized for specific use cases and can make your code more efficient and readable.

What is the collections Module?

The collections module includes the following data structures:

namedtuple : Creates tuple-like objects with named fields.

deque : A double-ended queue for fast appends and pops.

Counter : A dictionary subclass for counting hashable objects.

defaultdict : A dictionary subclass that provides default values for missing keys.
OrderedDict : A dictionary subclass that remembers the order of insertion (less relevant
in Python 3.7+, where regular dictionaries are ordered).

ChainMap : Combines multiple dictionaries into a single mapping.

1. namedtuple

A namedtuple is a factory function for creating tuple-like objects with named fields. It makes
code more readable by allowing access to elements by name instead of index.

Syntax:

from collections import namedtuple
NamedTuple = namedtuple("NamedTuple", ["fieldl", "field2", ...1)

Example:

from collections import namedtuple

Point = namEdtuple("Point", ["X", "y"])

p = Point(10, 20)

print(p.x, p.y)

10 20

2. deque

A deque (double-ended queue) is optimized for fast appends and pops from both ends. It is
more efficient than a list for operations that involve adding or removing elements from the
beginning.

Syntax:

from collections import deque
d = deque([iterable])

Example:

from collections import deque

d = deque([1, 2, 31)

d.append(d)

d.appendleft(0)

d.pop(Q)

d.popleft()

3. Counter

A Counter is a dictionary subclass for counting hashable objects. It is useful for tallying
occurrences of elements in a collection.

Syntax:

from collections import Counter
c = Counter([iterable])

Example:

from collections import Counter

¢ = Counter(["apple", "banana", "apple", "cherry", "banana", "apple"])

print(c)

print(c.most_common(2))

Counter({'apple': 3, 'banana': 2, 'cherry': 1})
[('apple', 3), ('banana', 2)]

4. defaultdict

A defaultdict is a dictionary subclass that provides default values for missing keys. It
eliminates the need to check if a key exists before accessing it.

Syntax:

from collections import defaultdict
d = defaultdict(default_factory)

Example:

from collections import defaultdict

d = defaultdict()

d["fruits"].append("apple")
d["fruits"].append("banana")

print(d)

defaultdict(<class 'list'>, {'fruits': ['apple', 'banana'l})

5. OrderedDict

An OrderedDict is a dictionary subclass that remembers the order of insertion. In Python
3.7+, regular dictionaries are ordered by default, so this is less commonly needed.

Syntax:

from collections import OrderedDict
od = OrderedDict([items])

Example:

from collections import OrderedDict

od = OrderedDict()

od[llall] — 1
od[llbll] - 2
od[llcll] - 3

print(od)

OrderedDict({'a': 1, 'b': 2, 'c': 3})

6. ChainMap

A ChainMap combines multiple dictionaries into a single mapping. It is useful for searching
through multiple dictionaries as if they were one.

Syntax:

from collections import ChainMap
cm = ChainMap(dictl, dict2, ...)

Example:

from collections import ChainMap

dictl
dict2

{Ilall: 1, Ilbll: 2}
{IIbII: 3, "C": LI'}

cm = ChainMap(dictl, dict2)

print(em["a"])

print(cm["b"])

print(em["c"])

Example Program

from collections import namedtuple

Point = namedtuple(llpointn, ["X", ||y||])
p = Point(10, 20)
print("Point:", p.x, p.y)

from collections import deque
d = deque([1, 2, 31)
d.append(4)

d.appendleft(0)
print("Deque:", d)

from collections import Counter

c = Counter(["apple", "banana", "apple", "cherry", "banana", "apple"])
print("Counter:", c)
print("Most common:", c.most_common(2))

from collections import defaultdict
d = defaultdict()
d["fruits"].append("apple")
d["fruits"].append("banana")
print("DefaultDict:", d)

from collections import OrderedDict
od = OrderedDict()

od[llall - 1
od[nbn] - 2
Od["C"] = 3

print("OrderedDict:", od)

from collections import ChainMap

dictl = {"a": 1, "b": 2}

dict2 = {"b": 3, "c": 4}

cm = ChainMap(dictl, dict2)
print("ChainMap:", cm["a"], cm["b"], cm["c"])

Point: 10 20

Deque: deque([0, 1, 2, 3, 41)

Counter: Counter({'apple': 3, 'banana': 2, 'cherry': 1})
Most common: [('apple', 3), ('banana', 2)]

DefaultDict: defaultdict(<class 'list'>, {'fruits': ['apple',

'banana']})

OrderedDict: OrderedDict({'a': 1, 'b': 2, 'c': 3})
ChainMap: 1 2 4

8. Itertools

The itertools module in Python provides a collection of tools for working with iterators.
These tools are designed to be fast, memory-efficient, and easy to use. They are particularly
useful for tasks involving iteration, combinations, permutations, and more.

What is the itertools Module?

The itertools module includes functions for:

Infinite iterators: Generate infinite sequences.
Combinatoric iterators: Generate combinations, permutations, and Cartesian products.
Terminating iterators: Process finite iterables in useful ways.

Common itertools Functions

Infinite Iterators
count() : Generates an infinite sequence of numbers.

import itertools

for i in itertools.count(start=1, step=2):
if i > 10:
break
print(i, end=" ")

13579

cycle() : Cycles through an iterable infinitely.

for item in itertools.cycle(["A", "B", "C"]1):
if item == "C":
break
print(item, end=" ")

A B

repeat() : Repeats an element infinitely or a specified number of times.

for item in itertools.repeat("Python", 3):
print(item, end=" ")

Python Python Python

Combinatoric Iterators
product() : Computes the Cartesian product of input iterables.

for item in itertools.product("AB", repeat=2):

print(item, end=" ")

CIAI, IAI) (lAl’ IBI) (lBl’ 'A') CIB', 'B')

permutations() : Generates all possible permutations of an iterable.

for item in itertools.permutations("ABC", 2):

print(item, end=" ")

CIAI' IBI) (lAl’ ICI) ('B', IAI) (IB', ICI) ('C', IAI) (IC', IBI)

combinations() : Generates all possible combinations of an iterable.

for item in itertools.combinations("ABC", 2):
print(item, end=" ")

CIAI, IBI) (lAl’ ICI) (lBl’ 'C')

combinations_with_replacement() : Generates combinations with repeated elements.

for item in itertools.combinations_with_replacement("ABC", 2):
print(item, end=" ")

(lAI, IAI) ('A', IBI) ('A', 'CI) ('B', 'BI) ('B', 'CI) (IC', 'CI)

Terminating Iterators
accumulate() : Returns accumulated sums or results of a binary function.

for item in itertools.accumulate([1, 2, 3, 4]):
print(item, end=" ")

13610

chain() : Chains multiple iterables together.

for item in itertools.chain("ABC", "DEF"):
print(item, end=" ")

ABCDEF

compress() : Filters elements using a boolean mask.

for item in itertools.compress("ABCDEF", [1, 0, 1, 0, 1, 0]):
print(item, end=" ")

ACE

dropwhile() : Drops elements until a condition is false.

for item in itertools.dropwhile(lambda x: x < 5, [1, 4, 6, 4, 1]1):
print(item, end=" ")

641

takewhile() : Takes elements until a condition is false.

for item in itertools.takewhile(lambda x: x < 5, [1, 4, 6, 4, 1]):
print(item, end=" ")

14

groupby () : Groups elements by a key function.

data = [("A", 1), ("A", 2), ("B", 3), ("B", W]

for Key, group in itertools.groupby(data, lambda x: x[0]):
print(key, list(group))

Output:

A [CA', 1), ('A', 2)]

B8 [('B', 3), ('B', W]

ALCAY, 1), ("A', 2)]
B [('B', 3), ('B', W]

Example Program

Working with Itertools

Infinite iterators
import itertools

print("Count:")
for i in itertools.count(start=1, step=2):
if i > 10:
break
print(i, end=" ") # Output: 13 57 9

print("\nCycle:")
for item in itertools.cycle(["A", "B", "C"]1):
if item == "C":
break
print(item, end=" ") # Output: A B

print("\nRepeat:")
for item in itertools.repeat("Python", 3):
print(item, end=" ") # Output: Python Python Python

Combinatoric iterators
print("\nProduct:")
for item in itertools.product("AB", repeat=2):
print(item, end=" ") # Output: ('A', 'A') (C'A', 'B') ('B', 'A') ('B',
IBI)

print("\nPermutations:")
for item in itertools.permutations("ABC", 2):

print(item, end=" ") # Output: (C'A', 'B') ('A', 'C') ('B', 'A') ('B',
'c') (¢, 'A') (C'Cc', 'BY)

print("\nCombinations:")

for item in itertools.

print(item, end="

print("\nCombinations

for item in itertools.

print(item, end="

print("\nAccumulate:")
for item in itertools.

print(item, end="

print("\nChain:")

for item in itertools.

print(item, end="
print("\nCompress:")
for item in itertools

print(item, end="

print("\nDropwhile:")

for item in itertools.

print(item, end="
print("\nTakewhile:")
for item in itertools

print(item, end="

print("\nGroupby:")

combinations("ABC", 2):

n)

with Replacement:")
combinations_with_replacement("ABC", 2):

||)

accumulate([1, 2, 3, 4l):

n)

chain("ABC", "DEF"):
n)

.compress("ABCDEF", [1, 0, 1, 0, 1, 0]):

n)

dropwhile(lambda x: x < 5, [1, 4, 6, 4, 1]1):
n)

.takewhile(lambda x: x < 5, [1, 4, 6, 4, 1]1):

n)

data - [(IIAII' l), (lIAlI, 2), (llBll, 3), (IlBII’ LI)]
for Key, group in itertools.groupby(data, lambda x: x[0]):

print(key,

Count:

135709

Cycle:

A B

Repeat:

Python Python Python
Product:

('A', 'A') ('A', 'BY)
Permutations:
('A', "B (*A', 'CY
Combinations:
C'A', "B (*A', 'Ch

(group))

('B', IAI) ('B', IBI)
('B', IAI) ('B', lcl) ('C', IAI) (ICI, 'B')
('B', ICI)

Combinations with Replacement:

('A', 'AI) (IA', 'BI) (IA', |C|) (IB',

Accumulate:

13610

Chain:

ABCDEF

Compress:

ACE

Dropwhile:

6 41

Takewhile:

14

Groupby:

AL[CA", 1), (A", 2)]
B [('B', 3), ("'B', W]

9. Lambda Functions

Lambda functions (also called anonymous functions) are small, inline functions defined
using the lambda keyword. They are useful for short, throwaway functions that are used
only once or in situations where defining a full function using def would be overkill.

What Are Lambda Functions?

Syntax:

lambda arguments: expression

'BI) (IB',

Example of a Lambda Function

Here’s a simple lambda function that adds two numbers:

add = lambda x, y: x + vy
print(add(3, 5))

ICI) (IC',

ICI)

A lambda function is a function without a name. It can take any number of arguments but can
only have one expression. The result of the expression is automatically returned.

When to Use Lambda Functions

Lambda functions are typically used in situations where a small function is needed for a
short period of time, such as:

As an argument to higher-order functions like map() , filter() , and sorted() .
For simple transformations or calculations.

Using Lambda Functions with map()

The map() function applies a function to all items in an iterable. Lambda functions are often
used with map() for concise transformations.

Example:

numbers = [1, 2, 3, 4, 5]
(map(lambda x: x ** 2, numbers))

squared
print(squared)

[1, 4, 9, 16, 25]

Using Lambda Functions with filter()

The filter() function filters elements from an iterable based on a condition. Lambda
functions are often used with filter() for concise filtering.

Example:

numbers = [1, 2, 3, 4, 5]
evens = ((lambda x: x % 2 == 0, numbers))
print(evens)

[2, 4]

Using Lambda Functions with sorted()

The sorted() function sorts an iterable. Lambda functions can be used to define custom
sorting keys.

Example:

students = [
{"name": "Alice", "age": 25},
{"name": "Bob", "age": 22},
{"name": "Charlie", "age": 23}

sorted_students = (students, key=lambda x: x["age"])
print(sorted_students)

[{'name': 'Bob', 'age': 22}, {'name': 'Charlie', 'age': 23}, {'name':
"Alice', 'age': 25}%]

Lambda Functions in List Comprehensions

Lambda functions can also be used in list comprehensions for concise transformations.

Example:
numbers = [1, 2, 3, 4, 5]
squared = [(lambda x: x ** 2)(x) for x in numbers]
print(squared)

[1, 4, 9, 16, 25]

Limitations of Lambda Functions

Single Expression: Lambda functions can only contain a single expression. They
cannot include statements like if, for, or while.

Readability: Overusing lambda functions can make code harder to read. For complex
logic, it's better to use a regular function defined with def .

Example Program

add = lambda x, y: x +y
print("Add:", add(3, 5))

numbers = [1, 2, 3, 4, 5]

squared = (map(lambda x: x ** 2, numbers))
print("Squared:", squared)

evens = ((lambda x: x % 2 == 0, numbers))
print("Evens:", evens)

students = [
{"name": "Alice", "age": 25%,
{"name": "Bob", "age": 22},
{"name": "Charlie", "age": 23}

]

sorted_students = (students, key=lambda x: x["age"])

print("Sorted Students:", sorted_students)

squared = [(lambda x: x ** 2)(x) for x in numbers]
print("Squared (List Comprehension):", squared)

Add: 8

Squared: [1, 4, 9, 16, 25]

Evens: [2, 4]

Sorted Students: [{'name': 'Bob', 'age': 22}, {'name':
23}, {'name': 'Alice', 'age': 25}]

Squared (List Comprehension): [1, 4, 9, 16, 25]

10. Exceptions and Errors

'Charlie’,

'age':

In Python, exceptions are events that occur during the execution of a program that disrupt

the normal flow of instructions. When an exception occurs, Python raises an error, which

can be caught and handled to prevent the program from crashing.

Types of Errors
Syntax Errors: Occur when the code violates Python’s syntax rules. These are detected
before the program runs.

print("Hello, World"

Runtime Errors (Exceptions): Occur during the execution of the program. Examples
include:

ZeroDivisionError : Division by zero.

TypeError : Performing an operation on incompatible types.

ValueError : Passing an invalid value to a function.

FileNotFoundError : Trying to open a file that doesn'’t exist.

Handling Exceptions with try/except

To handle exceptions, use a try/except block. The try block contains the code that might
raise an exception, and the except block contains the code to handle the exception.

Syntax:

try:

except ExceptionType:

Example:

try:
result =10 / 0

except ZeroDivisionError:
print("Error: Division by zero!")

Error: Division by zero!

Handling Multiple Exceptions

You can handle multiple exceptions by specifying multiple except blocks or using a tuple.

Example:

try:

num = (("Enter a number: "))

result = 10 / num
except ValueError:

print("Error: Invalid input. Please enter a number.")
except ZeroDivisionError:

print("Error: Division by zero.")

Enter a number: a

Error: Invalid input. Please enter a number.

The else Block

The else block is executed if no exceptions occur in the try block. It is useful for code that
should only run if the try block succeeds.

Example:

try:
num = (("Enter a number: "))
result = 10 / num
except ValueError:
print("Error: Invalid input. Please enter a number.")
except ZeroDivisionError:
print("Error: Division by zero.")
else:
print("Result:", result)

Enter a number: 2

Result: 5.0

The finally Block

The finally block is executed no matter what—whether an exception occurs or not. It is
typically used for cleanup actions, such as closing files or releasing resources.

Example:

try:
= ("example.txt", "r")
content = .read()
print(content)
except FileNotFoundError:
print("Error: File not found.")
finally:
.close()
print("File closed.")

Hello, World!
File closed.

Raising Exceptions

You can raise exceptions manually using the raise keyword. This is useful for enforcing
constraints or signaling errors in your code.

Example:

def (a, b):
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b

try:
result = divide(10, 0)
except ValueError as e:
print(e)

Cannot divide by zero.

Custom Exceptions

You can define your own exceptions by creating a new class that inherits from Python’s built-
in Exception class.

Example:

class NegativeNumberError(Exception):
pass

def check_positive(number):
if number < 0O:
raise NegativeNumberError("Negative numbers are not allowed.")

try:
check_positive(-5)
except NegativeNumberError as e:
print(e) # Output: Negative numbers are not allowed.

Negative numbers are not allowed.

Example Program

Working with Exceptions and Errors

Handling exceptions
try:
num = int(input("Enter a number: "))
result = 10 / num
except ValueError:
print("Error: Invalid input. Please enter a number.")
except ZeroDivisionError:
print("Error: Division by zero.")
else:
print("Result:", result)
finally:
print("Execution complete.")

Raising exceptions
def divide(a, b):
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b

try:
result = divide(10, 0)
except ValueError as e:
print(e) # Output: Cannot divide by zero.

Custom exceptions
class NegativeNumberError(Exception):
pass

def (number) :
if number < 0:
raise NegativeNumberError("Negative numbers are not allowed.")

try:
check_positive(-5)

except NegativeNumberError as e:
print(e)

Enter a number: 3

Result: 3.3333333333333335
Execution complete.

Cannot divide by zero.

Negative numbers are not allowed.

11. Logging

Logging is a way to track events that occur during the execution of a program. It is essential
for debugging, monitoring, and understanding the flow of your application. Python provides a
built-in Logging module that makes it easy to add logging to your code.

Why Use Logging?

Debugging: Log messages can help you identify and fix issues in your code.
Monitoring: Logs provide insights into the behavior of your application in production.
Auditing: Logs can be used to track user actions and system events.

Logging Levels

The logging module provides several levels of logging, each representing the severity of
the event being logged. The levels, in increasing order of severity, are:

DEBUG : Detailed information for debugging.
INFO : General information about the program’s execution.
WARNING : Indicates a potential issue that doesn’t prevent the program from running.

ERROR : Indicates a more serious issue that may prevent part of the program from
functioning.

CRITICAL : Indicates a critical issue that may prevent the entire program from
functioning.

Basic Logging

To use the logging module, you first need to configure it. By default, the logging module
logs messages with a severity level of WARNING or higher.

Example:

import logging

logging.warning("This is a warning message.")
logging.error("This is an error message.")
logging.critical("This is a critical message.")

WARNING:root:This is a warning message.
ERROR:root:This is an error message.
CRITICAL:root:This is a critical message.

Configuring Logging

You can configure the logging module to change the logging level, format, and output
destination.

Example:

import logging

logging.basicConfig(
level=logging.DEBUG,
="%(asctime)s - %(levelname)s - %(message)s",

filename="app.log",
filemode="w"

logging.debug("This is a debug message.")
logging.info("This is an info message.")
logging.warning("This is a warning message.")

logging.error("This is an error message.")
logging.critical("This is a critical message.")

WARNING:root:This is a warning message.
ERROR:root:This is an error message.
CRITICAL:root:This is a critical message.

The log messages will be written to app.log in the specified format.

Logging to Console and File

You can configure logging to output messages to both the console and a file using

handlers .

Example:

import logging

logger = logging.getLogger("my_logger")
logger.setLevel(logging.DEBUG)

console_handler = logging.StreamHandler()
console_handler.setLevel(logging.WARNING)

file_handler = logging.FileHandler("app.log")
file_handler.setLevel(logging.DEBUG)

formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")

console_handler.setFormatter(formatter)
file_handler.setFormatter(formatter)

logger.addHandler(console_handler)
logger.addHandler(file_handler)

logger.debug("This is a debug message.")
logger.info("This is an info message.")
logger.warning("This is a warning message.")

logger.error("This is an error message.")
logger.critical("This is a critical message.")

DEBUG:my_logger:This is a debug message.

INFO:my_logger:This is an info message.

2025-02-17 02:33:57,533 - WARNING - This is a warning message.
WARNING:my_logger:This is a warning message.

2025-02-17 02:33:57,535 - ERROR - This is an error message.
ERROR:my_logger:This is an error message.

2025-02-17 02:33:57,539 - CRITICAL - This is a critical message.
CRITICAL:my_logger:This is a critical message.

File Output (app.log):

with ('app.log', 'r') as
content = .read()
print(content)

2025-02-17 02:33:57,514
2025-02-17 02:33:57,531
2025-02-17 02:33:57,533
2025-02-17 02:33:57,535
2025-02-17 02:33:57,539

DEBUG - This is a debug message.

INFO - This is an info message.
WARNING - This is a warning message.
ERROR - This is an error message.
CRITICAL - This is a critical message.

Logging Exceptions

You can log exceptions using the logging.exception() method, which automatically
includes the exception traceback.

Example:

import logging

logging.basicConfig(level=1logging.DEBUG, ="%(asctime)s - %(levelname)s
- %(message)s")

try:
result = 10 / 0

except ZeroDivisionError:
logging.exception("An error occurred:")

ERROR:root:An error occurred:
Traceback (most recent call last):
File "C:\Users\attila\AppData\Local\Temp\ipykernel_10184\3197086528.py",
line 7, in <module>
result =10 / 0

NNNANN

ZeroDivisionError: division by zero

Example Program

import logging

logging.basicConfig(
level=logging.DEBUG,
="%(asctime)s - %(levelname)s - %(message)s",
filename="app.log",
filemode="w"

logging.debug("This is a debug message.")
logging.info("This is an info message.")
logging.warning("This is a warning message.")
logging.error("This is an error message.")
logging.critical("This is a critical message.")

try:
result =10 / 0

except ZeroDivisionError:
logging.exception("An error occurred:")

WARNING:root:This is a warning message.
ERROR:root:This is an error message.
CRITICAL:root:This is a critical message.
ERROR:root:An error occurred:
Traceback (most recent call last):
File "C:\Users\attila\AppData\Local\Temp\ipykernel_10184\351276769.py",

line 22, in <module>

result =10 / 0

NN

ZeroDivisionError: division by zero

12. JSON

JSON (JavaScript Object Notation) is a lightweight data interchange format that is easy for
humans to read and write and easy for machines to parse and generate. It is widely used for
transmitting data between a server and a web application, as well as for configuration files
and data storage.

What is JSON?

JSON is a text format that represents data as key-value pairs. It is based on a subset of
JavaScript but is language-independent. JSON data is often stored in . json files or
transmitted as strings.

Example JSON:
1
"name": "Alice",
"age": 25,

"is_student": false,
"courses": ["Math", "Science"],
"address": {

"city": "New York",

"zip": "10001"

JSON Data Types

JSON supports the following data types:

Strings: Enclosed in double quotes (" ").

Numbers: Integers or floating-point numbers.

Booleans: true or false.

Arrays: Ordered lists of values, enclosed in square brackets ([]).

Objects: Unordered collections of key-value pairs, enclosed in curly braces ({}).
null : Represents an empty or non-existent value.

Working with JSON in Python

Python provides the json module to encode and decode JSON data. The two main
functions are:

json.dumps() : Converts a Python object to a JSON-formatted string.
json.loads() : Converts a JSON-formatted string to a Python object.

Encoding Python Objects to JSON
Use json.dumps() to convert a Python object (e.g., dictionary, list) to a JSON string.

Example:

import json

data = {
"name": "Alice",
"age": 25,
"is_student": False,
"courses": ["Math", "Science"],
"address": {
"city": "New York",
"zip": "10001"

json_string = json.dumps(data, indent=4)
print(json_string)

"name": "Alice",
"age": 25,
"is_student": false,
"courses": [
"Math",
"Science"
1,
"address": {
"city": "New York",
"zip": "1e001"

Decoding JSON to Python Objects
Use json.loads() to converta JSON string to a Python object.

Example:

import json

json_string = '''

1
"name": "Alice",
"age": 25,
"is_student": false,
"courses": ["Math", "Science"],
"address": {
"city": "New York",
"zip": "1e001"
}
}

data = json.loads(json_string)
print(data)

{'name': 'Alice', 'age': 25, 'is_student': False, 'courses': ['Math',
'Science'], 'address': {'city': 'New York',6 'zip': '10001'}}

Reading and Writing JSON Files

You can read JSON data from a file and write JSON data to a file using the json.load()
and json.dump() functions.

Reading from a JSON File:

import json

with ("data.json", "r") as
data = json.load()
print(data)

{'name': 'Alice', 'age': 25, 'is_student': False, 'courses': ['Math',
'Science'], 'address': {'city': 'New York', ‘'zip': '10001'}}

Writing to a JSON File:

import json

data = {
"name": "Attila",
"age": 23,
"is_student": False,
"courses": ["Math", "Statics"],
"address": {
"city": "Urmia",
"zip": "50708"

with ("data.json", "w") as
json.dump(data, , indent=4)

Handling Custom Objects

By default, the json module cannot serialize custom Python objects. To handle this, you
can define a custom encoder by subclassing json.JSONEncoder or by using the default
parameter in json.dumps() .

Example:

import json
from datetime import datetime

class :
def (self, name, age):
self.name = name
self.age = age

def (obj):
if (obj, Person):
return {"name": obj.name, "age": obj.age}
raise TypeError(f"Object of type { (obj)} is not JSON serializable")

person = Person("Alice", 25)

json_string = json.dumps(person, default=person_encoder, indent=4)
print(json_string)

"name": "Alice",
"age": 25

Example Program

import json

data = {
"name": "Alice",
"age": 25,
"is_student": False,
"courses": ["Math", "Science"],
"address": {
"city": "New York",
"zip": "10001"

json_string = json.dumps(data, indent=4)
print("JSON String:")
print(json_string)

data_parsed = json.loads(json_string)
print("\nParsed Data:")
print(data_parsed)

with ("data.json", "w") as
json.dump(data, , indent=4)
with ("data.json", "r") as

data_from_file = json.load()
print("\nData from File:")
print(data_from_file)

class
def (self, name, age):
self.name = name
self.age = age
def (obj):
if (obj, Person):

return {"name": obj.name, "age":
raise TypeError(f"Object of type {

person = Person("Alice", 25)
json_string_custom
print("\nCustom Object JSON String:")

print(json_string_custom)

JSON String:
{
"name": "Alice",
25,
"is_student":
"courses": [
"Math",
"Science"

Ilagell :
false,

1,

"address": {
"city": "New York",
"zip": "10001"

Parsed Data:
{'name': 'Alice’',
'Science'],

'age': 25, 'is_student'

Data from File:
{'name': 'Alice’,
'Science'],

'age': 25, 'is_student'

'address': {'city': 'New York',

'address': {'city': 'New York',

obj.age}
(obj)} is not JSON serializable")

json.dumps(person, default=person_encoder, indent=u)

: False, 'courses': ['Math',
'zip': '10001'}}
: False, 'courses': ['Math',

'zip': '10001'}}

Custom Object JSON String:
i

"name": "Alice",
"age": 25

13. Random Numbers

Generating random numbers is a common task in programming, whether for simulations,
games, or security applications. Python provides the random module, which includes
functions for generating random numbers, shuffling sequences, and selecting random
elements.

The random Module

The random module is part of Python’s standard library and provides various functions for
working with randomness. To use it, you need to import the module:

import random

Generating Random Numbers

random.random() : Generates a random float between 0.0 and 1.0.

print(random.random())

0.8u48u8528U7223121
random.uniform(a, b) : Generates a random float between a and b.

print(random.uniform(1.5, 4.5))

2.38U758360282017

random.randint(a, b) : Generates a random integer between a and b (inclusive).

print(random.randint(1l, 10))

random.randrange(start, stop, step) : Generates a random integer from a range.

print(random.randrange(0, 100, 5))

65

Selecting Random Elements

random.choice(seq) : Selects a random element from a sequence (e.g., list, tuple,
string).

fruits = ["apple", "banana", "cherry"]
print(random.choice(fruits))

banana

random.choices(seq, k=n): Selects n random elements from a sequence (with
replacement).

print(random.choices(fruits, k=2))

['cherry', 'apple'l

random.sample(seq, k=n) : Selects n unique random elements from a sequence
(without replacement).

print(random.sample(fruits, 2))

['apple', 'banana'l

Shuffling Sequences

random.shuffle(seq) : Shuffles a sequence in place (modifies the original sequence).

numbers = [1, 2, 3, 4, 5]
random.shuffle(nhumbers)
print(numbers)

[0, 1, 3, 2, 5]

random.sample(seq, k=len(seq)) : Returns a shuffled version of the sequence without
modifying the original.

shuffled = random.sample(numbers, k= (numbers))
print(shuffled)

[3, 5, 4, 1, 2]

Seeding Random Numbers

The random.seed() function initializes the random number generator with a specific seed
value. This ensures that the sequence of random numbers is reproducible.

Example:

random.seed(42)
print(random.random())
print(random.random())

random.seed(42)
print(random.random())

0.639426798U578837
0.025010755222666936
0.639426798U578837

Example Program

import random

print("Random float between 0.0 and 1.0:", random.random())
print("Random float between 1.5 and 4.5:", random.uniform(1l.5, 4.5))

print("Random integer between 1 and 10:", random.randint(l, 10))
print("Random integer from range 0 to 100 (step 5):", random.randrange(0,
100, 5))

fruits = ["apple", "banana", "cherry"]

print("Random choice from fruits:", random.choice(fruits))

print("Random choices (with replacement):", random.choices(fruits, k=2))
print("Random sample (without replacement):", random.sample(fruits, 2))

numbers = [1, 2, 3, 4, 5]
random. shuffle(numbers)
print("Shuffled numbers:", numbers)

random.seed(42)

print("Random number with seed 42:", random.random())
random.seed(42)
print("Random number with seed 42 (again):", random.random())

Random float between 0.0 and 1.0: 0.025010755222666936
Random float between 1.5 and 4.5: 2.3250879551073576
Random integer between 1 and 10: 4

Random integer from range 0 to 100 (step 5): 20

Random choice from fruits: cherry

Random choices (with replacement): ['apple', 'cherry']
Random sample (without replacement): ['cherry', 'apple'l
Shuffled numbers: [2, 3, 1, 4, 5]

Random number with seed 42: 0.639426798u578837

Random number with seed 42 (again): 0.639426798U578837

14. Decorators

Decorators are a powerful and flexible feature in Python that allow you to modify or extend
the behavior of functions or methods without changing their actual code. They are often used
for logging, access control, memoization, and more.

What Are Decorators?

A decorator is a function that takes another function as input, adds some functionality to it,
and returns a new function. Decorators are applied using the @ symbol.

Example:
def (func):
def O:
print("Something is happening before the function is called.")
func()

print("Something is happening after the function is called.")
return wrapper

@my_decorator
def Q:
print("Hello!")

say_hello()

Something is happening before the function is called.
Hello!
Something is happening after the function is called.

How Decorators Work

The decorator function (my_decorator) takes a function (func) as an argument.

Inside the decorator, a new function (wrapper) is defined that adds some behavior
before and/or after calling the original function.

The decorator returns the wrapper function.

When the decorated function (say_hello) is called, the wrapper function is executed
instead.

Decorators with Arguments

If the decorated function takes arguments, the wrapper function must accept those
arguments and pass them to the original function.

Example:

def (func):
def (*xargs, **kwargs):
print("Something is happening before the function is called.")
result = func(*args, **kwargs)

print("Something is happening after the function is called.")
return result
return wrapper

@my_decorator
def (name):
print(f"Hello, {name}!")

greet("Alice")
Something is happening before the function is called.

Hello, Alice!
Something is happening after the function is called.

Chaining Decorators

You can apply multiple decorators to a single function. The decorators are applied from
bottom to top.

Example:
def (func):
def Q:
print("Decorator 1")
func()

return wrapper

def (func):
def QO:
print("Decorator 2")
func()
return wrapper

@decoratorl

@decorator2

def O:
print("Hello!")

say_hello()
Decorator 1

Decorator 2
Hello!

Decorators with Arguments

You can create decorators that accept arguments by adding an extra layer of nesting.

Example:
def (num_times):
def (func):
def (xargs, **kwargs):
for _ in (num_times):

result = func(*args, #**kwargs)
return result
return wrapper
return decorator

@repeat(3)
def (name):
print(f"Hello, {name}!")

greet("Alice")
Hello, Alice!

Hello, Alice!
Hello, Alice!

Built-in Decorators
Python provides some built-in decorators, such as:

@staticmethod : Defines a static method that does not depend on the instance or class.
@classmethod : Defines a class method that takes the class as its first argument.

@property : Defines a method as a property, allowing it to be accessed like an attribute.

Example:
class :
@staticmethod
def O:
print("This is a static method.")
@classmethod
def (cls):

print(f"This is a class method of {cls.__name__}.")

@property

def my_property(self):
return "This is a property."

Usage
MyClass.static_method() # Output: This is a static method.
MyClass.class_method() # Output: This is a class method of MyClass.

obj = MyClass()
print(obj.my_property) # Output: This is a property.

This is a static method.
This is a class method of MyClass.
This is a property.

Example Program

Working with Decorators

Basic decorator
def my_decorator(func):
def wrapper():
print("Something is happening before the function is called.")
func()
print("Something is happening after the function is called.")
return wrapper

@my_decorator
def say_hello():
print("Hello!")

say_hello()

Decorator with arguments
def my_decorator(func):
def wrapper(*args, **kwargs):
print("Something is happening before the function is called.")
result = func(*args, **kwargs)
print("Something is happening after the function is called.")
return result
return wrapper

@my_decorator
def greet(name):
print(f"Hello, {name}!")

greet("Alice")

Chaining decorators
def decoratorl(func):
def wrapper():
print("Decorator 1")
func()
return wrapper

def decorator2(func):
def wrapper():
print("Decorator 2")
func()
return wrapper

@decoratorl

@decorator2

def say_hello():
print("Hello!")

say_hello()

Decorator with arguments
def repeat(num_times):
def decorator(func):
def wrapper(*args, #*xkwargs):
for _ in range(num_times):
result = func(*args, #**kwargs)
return result
return wrapper
return decorator

@repeat(3)
def greet(name):
print(f"Hello, {name}!")

greet("Alice")

Built-in decorators
class MyClass:
@staticmethod
def static_method():
print("This is a static method.")

@classmethod
def class_method(cls):
print(f"This is a class method of {cls.__name__}.")

@property
def my_property(self):

return "This is a property."

MyClass.static_method()
MyClass.class_method()

obj = MyClass()
print(obj.my_property)

Something is happening before the function is called.
Hello!

Something is happening after the function is called.
Something is happening before the function is called.
Hello, Alice!

Something is happening after the function is called.
Decorator 1

Decorator 2

Hello!

Hello, Alice!

Hello, Alice!

Hello, Alice!

This is a static method.

This is a class method of MyClass.

This is a property.

15. Generators

Generators are a special type of iterator in Python that allow you to iterate over a sequence
of values without storing the entire sequence in memory. They are defined using functions
and the yield keyword. Generators are particularly useful for working with large datasets or

infinite sequences.

What Are Generators?

A generator is a function that returns an iterator. Instead of using return to produce a

value, a generator uses yield . When a generator function is called, it returns a generator

object that can be iterated over.

Example:

def O:
yield 1
yield 2

yield 3

gen = simple_generator()

for value in gen:
print(value)

How Generators Work

When a generator function is called, it returns a generator object but does not start
execution.

The generator function runs until it encounters a yield statement, which produces a
value and pauses the function.

The function resumes execution from where it left off when the next value is requested.

Advantages of Generators

Memory Efficiency: Generators produce values on-the-fly, so they don’t store the entire
sequence in memory.

Lazy Evaluation: Values are computed only when needed, making generators ideal for
large or infinite sequences.

Creating Generators

Using yield:
Define a generator function using the yield keyword.

Example:

def (n):
count = 1
while count <= n:
yield count
count += 1

gen = count_up_to(5)

for value in gen:
print(value)

g FE w N R

Generator Expressions:
Similar to list comprehensions, but use parentheses () instead of square brackets [] .

Example:

gen = (x ** 2 for x in (5))

for value in gen:
print(value)

O F B ©

Infinite Generators

Generators can be used to create infinite sequences because they produce values on-the-
fly.

Example:
def O:
num = 0
while True:

yield num
num += 1

gen = infinite_sequence()

for _ in (5):

print((gen))

E w N PR OO

Sending Values to Generators

You can send values to a generator using the send() method. This allows two-way
communication between the generator and the caller.

Example:

def QF
value = yield
yield f"Received: {value}"

gen = generator_with_send()

(gen)

result = gen.send("Hello")
print(result)

Received: Hello

Example Program

def simple_generator():
yield 1
yield 2
yield 3

gen = simple_generator()

print("Simple Generator:")

for value in gen:
print(value)

Generator with yield
def count_up_to(n):
count = 1
while count <= n:
yield count
count += 1

gen = count_up_to(5)

print("\nCount Up To 5:")

for value in gen:
print(value)

Generator expression
gen = (x ** 2 for x in range(5))
print("\nGenerator Expression:")
for value in gen:

print(value)

Infinite generator
def infinite_sequence():

num = 0

while True:
yield num
num += 1

gen = infinite_sequence()
print("\nInfinite Generator (First 5 Values):")
for _ in range(5):

print(next(gen))

Sending values to a generator
def generator_with_send():
value = yield
yield f"Received: {value}"

gen = generator_with_send()
next(gen)
result = gen.send("Hello")

print("\nGenerator with Send:")
print(result)

Simple Generator:
1
2
3

Count Up To 5:
1

aa EFE w N

Generator Expression:
0

1

i}

9

16

Infinite Generator (First 5 Values):
0

E w NP

Generator with Send:
Received: Hello

16. Threading vs Multiprocessing

In Python, threading and multiprocessing are two approaches to achieve concurrency and
parallelism. They allow you to run multiple tasks simultaneously, but they work differently and
are suited for different types of problems.

What is Concurrency?

Concurrency is the ability of a program to manage multiple tasks at the same time. It doesn’t
necessarily mean that tasks are executed simultaneously; instead, the program switches
between tasks to make progress on all of them.

What is Parallelism?

Parallelism is the ability of a program to execute multiple tasks simultaneously, typically by
leveraging multiple CPU cores.

Threading

Threads are lightweight processes that share the same memory space.

Threading is suitable for I/0-bound tasks (e.g., reading/writing files, network requests)
where the program spends time waiting for external resources.

Python’s Global Interpreter Lock (GIL) prevents multiple threads from executing Python
bytecode simultaneously, which can limit the performance of CPU-bound tasks.

Example:

import threading
import time

def Q:
for i in (5):
print(f"Thread 1: {i}")
time.sleep(1)

def Q:
for letter in "ABCDE":
print(f"Thread 2: {letter}")
time.sleep(1)

threadl
thread2

threading.Thread(target=print_numbers)
threading.Thread(target=print_letters)

threadl.start()
thread2.start()

threadl. join()
thread2. join()

print("Done!")

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Done!

N P NPEFP NMNEFEPNEREDNDR
m £ T W NANREL >» O

Multiprocessing

Processes are independent instances of a program that run in separate memory
spaces.

Multiprocessing is suitable for CPU-bound tasks (e.g., mathematical computations)
where the program benefits from using multiple CPU cores.

Each process has its own Python interpreter and memory space, so the GIL is not a
limitation.

Example:

import multiprocessing
import time

def O:
for i in (5):
print(f"Process 1: {i}")
time.sleep(1)

def 0O:
for letter in "ABCDE":
print(f"Process 2: {letter}")
time.sleep(1)

processl = multiprocessing.Process(target=print_numbers)
process2 = multiprocessing.Process(target=print_letters)

processl.start()
process2.start()

processl.join()
process2.join()

print("Done!")

Process 1: 0

Process 2: A

Process 1: 1

Process 2: B

Process 1: 2

Process 2: C

Process 1: 3

Process 2: D

Process 1: UProcess 2: E
Done!

Key Differences Between Threading and Multiprocessing

Feature Threading Multiprocessing

Memory Threads share the same memory Processes have separate memory

space. spaces.
GIL Affected by the GIL (limits CPU- Not affected by the GIL.
bound tasks).
Use Case Best for I/0O-bound tasks. Best for CPU-bound tasks.
Overhead Low overhead. Higher overhead due to separate

memory spaces.

Scalability Limited by the GIL. Scales well with multiple CPU cores.

When to Use Threading vs Multiprocessing

Use Threading:

For 1/0-bound tasks (e.g., file /0, network requests).

When tasks involve waiting for external resources.

When you need to share data between tasks (since threads share memory).
Use Multiprocessing:

For CPU-bound tasks (e.g., mathematical computations).

When you need to leverage multiple CPU cores.

When tasks are independent and don’t need to share data.

Example Program

import threading
import multiprocessing
import time

def O:
for i in (5):
print(f"Thread 1: {i}")
time.sleep(1)

def Q:
for letter in "ABCDE":
print(f"Thread 2: {letter}")
time.sleep(1)

print("Threading Example:")
threadl = threading.Thread(target=print_numbers)
thread2 = threading.Thread(target=print_letters)

threadl.start()
thread2.start()

threadl. join()
thread2. join()
print("Threading Done!\n")

def O:
for i in (5):
print(f"Process 1: {i}")
time.sleep(1)

def O:
for letter in "ABCDE":
print(f"Process 2: {letter}")
time.sleep(1)

print("Multiprocessing Example:")
processl = multiprocessing.Process(target=print_numbers)
process2 = multiprocessing.Process(target=print_letters)

processl.start()
process2.start()

processl.join()

process2.join()
print("Multiprocessing Done!")

Threading Example:

Thread 1: 0
Thread 2: A
Thread 1: 1
Thread 2: B
Thread 1: 2
Thread 2: C
Thread 1: 3
Thread 2: D
Thread 1: 4
Thread 2: E

Threading Done!

Multiprocessing Example:
Process 1: 0

Process 2: A
Process 1: 1
Process 2: B
Process 1: 2
Process 2: C
Process 1: 3Process 2: D

Process 1: 4
Process 2: E
Multiprocessing Done!

17. Multithreading

Multithreading is a technique that allows a program to run multiple threads concurrently.
Threads are lightweight processes that share the same memory space, making them ideal
for I/0-bound tasks (e.g., file I/O, network requests) where the program spends time waiting
for external resources.

What is a Thread?

A thread is the smallest unit of execution within a process. Multiple threads can exist within
the same process and share resources such as memory and file handles.

Advantages of Multithreading

Concurrency: Allows multiple tasks to run concurrently, improving responsiveness.
Resource Sharing: Threads share the same memory space, making it easier to share
data between tasks.

Efficiency: Threads are lightweight compared to processes, so creating and switching
between threads is faster.

Limitations of Multithreading in Python

Global Interpreter Lock (GIL): Python’s GIL prevents multiple threads from executing
Python bytecode simultaneously, which can limit the performance of CPU-bound tasks.
Thread Safety: Shared data between threads can lead to race conditions if not properly
synchronized.

Creating Threads

Python provides the threading module to work with threads. You can create a thread by
subclassing threading.Thread or by passing a target function to the threading.Thread
constructor.

Example:

import threading
import time

def 0O:
for i in (5):
print(f"Thread 1: {i}")
time.sleep(1)

def O:
for letter in "ABCDE":
print(f"Thread 2: {letter}")
time.sleep(1)

threadl = threading.Thread(target=print_numbers)

thread2 = threading.Thread(target=print_letters)

threadl.start()
thread2.start()

threadl. join()
thread2. join()

print("Done!")

Thread 1: 0
Thread 2: A
Thread 1: 1
Thread 2: B
Thread 1: 2
Thread 2: C
Thread 1: 3
Thread 2: D
Thread 1: 4
Thread 2: E
Done!

Thread Synchronization

When multiple threads access shared resources, you need to synchronize their access to
avoid race conditions. Python provides several synchronization primitives, such as locks,
semaphores, and conditions.

Example: Using a Lock

import threading

counter = 0
lock = threading.Lock()

def QO:
global counter
for _ in (100000):

with lock:
counter += 1

threadl
thread2

threading.Thread(target=increment)
threading.Thread(target=increment)

threadl.start()
thread2.start()

threadl. join()
thread2. join()

print("Counter:", counter)

Counter: 200000

Daemon Threads

A daemon thread is a thread that runs in the background and does not prevent the program
from exiting. When the main program exits, all daemon threads are automatically terminated.

Example:

import threading
import time

def O:
while True:
print("Daemon thread is running...")
time.sleep(1)

daemon_thread = threading.Thread(target=daemon_task, daemon=True)

daemon_thread.start()

print("Main program is running...")
time.sleep(3)
print("Main program is done.")

Daemon thread is running...
Main program is running...
Daemon thread is running...
Daemon thread is running...

Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running..
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Main program is done.

Thread Pools

A thread pool is a collection of pre-initialized threads that are ready to perform tasks.
Python’s concurrent.futures module provides a ThreadPoolExecutor for managing
thread pools.

Example:

from concurrent.futures import ThreadPoolExecutor
import time

def (name):
print(f"Task {name} started")
time.sleep(2)
print(f"Task {name} finished")

with ThreadPoolExecutor(max_workers=3) as executor:
futures = [executor.submit(task, i) for i in (5)1

print("All tasks completed.")

Task 0 started

Task 1 started

Task 2 started

Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...

Daemon thread is running...
Task 0 finished

Task 3 started

Task 1 finished

Task 4 started

Task 2 finished

Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running..
Daemon thread is running...
Daemon thread is running...
Task 3 finished

Task 4 finished

ALl tasks completed.

Example Program

import threading
import time
from concurrent.futures import ThreadPoolExecutor

def 0O:
for i in (5):
print(f"Thread 1: {i}")
time.sleep(1)

def O:
for letter in "ABCDE":
print(f"Thread 2: {letter}")
time.sleep(1)

print("Basic Threading Example:")
threadl = threading.Thread(target=print_numbers)
thread2 = threading.Thread(target=print_letters)

threadl.start()
thread2.start()

threadl. join()
thread2. join()

print("Basic Threading Done!\n")

Thread synchronization example
counter = 0
lock = threading.Lock()

def increment():

global counter
_ in range(100000):
with lock:

counter += 1

for

print("Thread Synchronization Example:")
threadl = threading.Thread(target=increment)
thread2 = threading.Thread(target=increment)

threadl.start()
thread2.start()

threadl. join()

thread2. join()

print("Counter:", counter)
print("Thread Synchronization Done!\n")

Daemon thread example
def daemon_task():
while True:
print("Daemon thread is running...")
time.sleep(1)

print("Daemon Thread Example:")
daemon_thread = threading.Thread(target=daemon_task, daemon=True)
daemon_thread.start()

print("Main program is running...")
time.sleep(3)
print("Main program is done.\n")

Thread pool example

def task(name):
print(f"Task {name} started")
time.sleep(2)
print(f"Task {name} finished")

print("Thread Pool Example:")
with ThreadPoolExecutor(max_workers=3) as executor:

futures = [executor.submit(task, i) for i in range(5)]

print("All tasks completed.")

Daemon thread is running...
Basic Threading Example:
Thread 1: ©

Thread 2: A

Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Thread 1: 1

Thread 2: B

Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Thread 1: 2

Thread 2: C

Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Thread 1: 3

Thread 2: D

Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Thread 1: 4

Thread 2: E

Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Basic Threading Done!

Thread Synchronization Example:
Daemon thread is running...
Counter: 200000

Thread Synchronization Done!

Daemon Thread Example:

Daemon thread is running...
Main program is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...

Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Main program is done.

Thread Pool Example:

Task 0 started

Daemon thread is running...
Task 1 started

Task 2 started

Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Task 0 finished

Task 3 started

Task 1 finished

Task 4 started

Daemon thread is running...
Task 2 finished

Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Task 3 finished

Task 4 finished

Daemon thread is running...
ALl tasks completed.

18. Multiprocessing in Python

Multiprocessing is a Python module that allows you to create processes that can run
concurrently, taking advantage of multiple CPU cores. This is particularly useful for CPU-

bound tasks (tasks that require heavy computation) because it enables true parallel
execution, unlike threading, which is limited by Python's Global Interpreter Lock (GIL).

Key Concepts in Multiprocessing

Process: A process is an instance of a program that runs independently. Each process
has its own memory space, which means it doesn’t share data with other processes by
default.

Parallelism: Multiprocessing enables parallelism, where multiple tasks are executed
simultaneously on different CPU cores.

Inter-Process Communication (IPC): Processes can communicate with each other
using mechanisms like Queue, Pipe, or shared memory.

GIL (Global Interpreter Lock): The GIL prevents multiple threads from executing Python
bytecode simultaneously in a single process. Multiprocessing avoids this limitation by
using separate processes.

Basic Usage of Multiprocessing

To use the multiprocessing module, you typically follow these steps:

Import the multiprocessing module.

Define a function that will run in a separate process.

Create a Process object and specify the target function.

Start the process using the start() method.

Optionally, wait for the process to finish using the join() method.

Here’s an example:

import multiprocessing
import time

def (name):
print(f"Process {name} started")
time.sleep(2)
print(f"Process {name} finished")

if __name__ == "__main__":

processl = multiprocessing.Process(target=worker_function, args=
("Process 1",))

process2 = multiprocessing.Process(target=worker_function, args=
("Process 2",))

processl.start()
process2.start()

processl.join()
process2.join()

print("All processes finished")

Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Process Process 1 started
Process Process 2 started
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Daemon thread is running..
Daemon thread is running...
Daemon thread is running...
Process Process 1 finished
Process Process 2 finished
Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
All processes finished

Notice

there is " Daemon thread is running... " in the out put.

Why This Happens in Jupyter Notebook

Jupyter Notebooks run on an IPython kernel, which has its own event loop and threading
model. When you use the multiprocessing module, it can sometimes interfere with the
kernel's behavior, leading to unexpected output or behavior, such as the repeated "Daemon
thread is running..." messages.This could solved by restarting the kernel in Jupyter
Notebook.

Key Components of Multiprocessing

Process Class:
Used to create and manage processes.
Key methods:

start() : Starts the process.
join() : Waits for the process to complete.
is_alive() : Checks if the process is still running.
Queue :
A thread-safe way to share data between processes.
Example:

import multiprocessing

def (q):
g.put("Hello from the worker process!")

if __name__ == "__main__":
g = multiprocessing.Queue()
p = multiprocessing.Process(target=worker, args=(q,))
p.start()

print(q.get())
p.join()

Hello from the worker process!

Pool :

A pool of worker processes for parallel execution of a function across multiple inputs.
Example:

import multiprocessing

def (x):
return x * X

if __name__ == "__main__":
with multiprocessing.Pool(processes=4) as pool:
results = pool. (square, (10))
print(results)

[e, 1, 4, 9, 16, 25, 36, 49, 64, 81]
Pipe:
A two-way communication channel between processes.

Example:

import multiprocessing

def (conn):
conn.send("Message from worker")
conn.close()

if __name__ == "__main__":
parent_conn, child_conn = multiprocessing.Pipe()
p = multiprocessing.Process(target=worker, args=(child_conn,))
p.start()
print(parent_conn.recv())
p.join()

Daemon thread is running...
Message from worker
Daemon thread is running...

Shared Memory:

Allows processes to share data using Value and Array .
Example:

import multiprocessing

def (val):
val.value += 1

if __name__ == "__main__":
shared_value = multiprocessing.Value("i", 0)
p = multiprocessing.Process(target=worker, args=(shared_value,))
p.start()
p.join()
print(shared_value.value)

Advantages of Multiprocessing

True parallel execution for CPU-bound tasks.
Avoids the GIL limitation.
Each process has its own memory space, reducing the risk of data corruption.

Disadvantages of Multiprocessing

Higher memory usage compared to threading.

Inter-process communication can be complex.
Slower to start compared to threads due to the overhead of creating new processes.

19. Function Arguments in Python

In Python, functions can accept arguments (also called parameters) to make them more
flexible and reusable. Understanding how to work with function arguments is essential for
writing clean and efficient code. Python supports several types of function arguments:

Positional Arguments

Keyword Arguments

Default Arguments

Variable-Length Arguments (*args and “kwargs’)**
Keyword-Only Arguments

Positional-Only Arguments (Python 3.8+)

Let’s explore each of these in detail.

1. Positional Arguments

Positional arguments are the most common type of arguments. They are passed to a
function in the order they are defined.

def (name, message):
print(f"{message}, {name}!")

greet("Alice", "Hello")

Hello, Alice!

The order of arguments matters. "Alice" is assigned to name , and "Hello" is
assigned to message .

2. Keyword Arguments

Keyword arguments are passed with a keyword (i.e., the parameter name) and can be in any
order.

greet(message="Hi", name="Bob")

Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
Hi, Bob!

Here, the order doesn’t matter because the arguments are explicitly named.

3. Default Arguments

Default arguments allow you to define a default value for a parameter. If the caller doesn’t
provide a value, the default is used.

def (name, message="Hello"):
print(f"{message}, {namel}!")

greet("Alice")
greet("Bob", "Hi")

Daemon thread is running...
Daemon thread is running...
Hello, Alice!

Hi, Bob!

message has a default value of "Hello", so it’s optional.

Note: Default arguments are evaluated only once when the function is defined, not each
time the function is called. Be careful with mutable default arguments (e.g., lists or
dictionaries).

4. Variable-Length Arguments

Python allows you to handle an arbitrary number of arguments using *args and *xkwargs .

*xargs : Used to pass a variable number of positional arguments. It collects them into a
tuple.

“kwargs **: Used to pass a variable number of keyword arguments. It collects them into a
dictionary.

Example with *args :

def (*args):
return (args)

printCadd(1, 2, 3))

print(add(4, 5, 6, 7))

Daemon thread is running...
Daemon thread is running...
6
22

Example with "kwargs™:**

def (**kwargs) :
for key, value in kwargs.items():
print(f"{key}: {value}")

display_info(name="Alice", age=30, city="New York")

name: Alice
age: 30
city: New York

5. Keyword-Only Arguments

Keyword-only arguments are arguments that can only be passed using the keyword syntax.
They are defined after a * in the function signature.

def (*, name, message):
print(f"{message}, {name}!")

greet(name="Alice", message="Hi")

Hi, Alice!

The * enforces that all arguments after it must be passed as keyword arguments.

6. Positional-Only Arguments (Python 3.8+)

Positional-only arguments are arguments that can only be passed by position. They are
defined before a / in the function signature.

def (name, /, message):
print(f"{message}, {name}!")

greet("Alice", message="Hi")

Hi, Alice!

The / enforces that all arguments before it must be passed as positional arguments.

Combining All Types of Arguments

You can combine all these types of arguments in a single function. The order of parameters
must follow this rule:

Positional-only arguments (before /).
Regular positional arguments.

xargs (variable-length positional arguments).
Keyword-only arguments (after *).

xxkwargs (variable-length keyword arguments).

Example:

def (a, b, /, ¢, d=t, *args, e, f=6, *xkwargs):
print(f"a: {a}, b: {b}, c: {c}, d: {d}, args: {args}, e: {e}, f: {f},
kwargs: {kwargs}")

example(l, 2, 3, e=5, extra="hello")

a: 1, b: 2, c: 3, d: 4, args: (), e: 5, f: 6, kwargs: {'extra': 'hello'?}

Best Practices for Function Arguments

Use descriptive names for parameters to improve readability.

Avoid mutable default arguments (e.g., def func(arg=[])) to prevent unexpected
behavior.

Use xargs and x*kwargs sparingly, as they can make the function signature less clear.
Use keyword-only arguments to enforce clarity and prevent misuse.

20. The Asterisk (*) Operator in Python

The asterisk (*) operator is a versatile symbol in Python with multiple uses depending on
the context. Here are the main ways it is used:

Multiplication and Exponentiation

Unpacking Iterables

Extended Unpacking (Python 3+)
Variable-Length Arguments in Functions (*args)
Unpacking in Function Calls

Keyword Argument Unpacking (*)**

Keyword-Only Arguments in Functions

Let’s explore each of these in detail.

1. Multiplication and Exponentiation

The * operator is used for multiplication and the *x operator is used for exponentiation.

result = 5 % 3
print(result)

result = 2 %% 3
print(result)

15

2. Unpacking Iterables

The = operator can be used to unpack iterables (e.g., lists, tuples) into individual
elements.

numbers = [1, 2, 3]
print(*numbers)

123
This is equivalent to:

print(1, 2, 3)

123

3. Extended Unpacking (Python 3+)

Python 3 introduced extended unpacking, which allows you to unpack parts of an iterable.

first, *middle, last = [1, 2, 3, 4, 5]
print(first)

print(middle)

print(last)

Daemon thread is running...
Daemon thread is running...
Daemon thread is running...
1

[2, 3, 4]

5

*middle captures all the elements between the first and last elements.

4. Variable-Length Arguments in Functions (*args)

The * operator is used in function definitions to accept a variable number of positional
arguments. These arguments are collected into a tuple.

def (*args):
return (args)

print(sum_numbers(1l, 2, 3))
print(sum_numbers(d4, 5, 6, 7))

22

xargs allows the function to accept any number of positional arguments.

5. Unpacking in Function Calls

The * operator can be used to unpack an iterable into individual arguments when
calling a function.

def (name, message):
print(f"{message}, {name}!")

data = ["Alice", "Hello"]
greet(*data)

Hello, Alice!

xdata unpacks the list into two arguments: name="Alice" and message="Hello" .

6. Keyword Argument Unpacking (7)**

The *x operator is used to unpack a dictionary into keyword arguments.

def (name, message):
print(f"{message}, {name}!")

data = {"name": "Bob", "message": "Hi"}
greet(**data)

Hi, Bob!

x*data unpacks the dictionary into keyword arguments: name="Bob" and

message="Hi" .

7. Keyword-Only Arguments in Functions

The * operator can be used in function definitions to enforce keyword-only arguments.
Arguments after * must be passed as keyword arguments.

def (*, name, message):
print(f"{message}, {name}!")

greet(name="Alice", message="Hi")

Hi, Alice!

The * ensures that name and message must be passed as keyword arguments.

Combining * and " in Function Calls**

You can combine * and ** to unpack both positional and keyword arguments.

def (a, b, c):
print(f"a: {a}, b: {b}, c: {c}")

args = [1, 2]
kwargs = {"c": 3}
func(*args, **kwargs)

a: 1, b: 2, c: 3

Summary of Uses

Use Case Example

Multiplication 5% 3 — 15

Exponentiation 2 *x 3 — 8

Unpacking iterables print(*[1, 2, 3]) - 123

Extended unpacking first, *middle, last = [1, 2, 3, 4, 5]

Variable-length arguments (*args) def func(*args):

Unpacking in function calls func(*[1, 2, 31)

Use Case Example
Keyword argument unpacking (**) func(**{"a": 1, "b": 2})

Keyword-only arguments def func(*, a, b): ...

21. Shallow vs Deep Copying in Python

In Python, copying objects is a common operation, but it's important to understand the
difference between shallow copying and deep copying. The behavior of these operations
depends on whether the object contains mutable or immutable elements.

Key Concepts

Mutable vs Immutable Objects:
Mutable objects: Objects whose state can be changed after creation (e.g., lists,
dictionaries, sets).

Immutable objects: Objects whose state cannot be changed after creation (e.g.,
integers, strings, tuples).
Assignment:

When you assign an object to a new variable, both variables reference the same
object in memory.

Changes to the object through one variable will affect the other.
Shallow Copy:
Creates a new object but inserts references to the original nested objects.
Changes to mutable nested objects will affect both the original and the copy.
Deep Copy:
Creates a new object and recursively copies all nested objects.
Changes to mutable nested objects will not affect the original or the copy.

Shallow Copy

A shallow copy creates a new object but does not recursively copy nested objects. Instead, it
inserts references to the original nested objects.

How to Create a Shallow Copy:

Use the copy() method (for lists, dictionaries, etc.).

Use the copy.copy() function from the copy module.

Example:

import copy

original = [[1, 2, 3], [4, 5, 6]]
shallow_copy = copy.copy(original)
shallow_copy[0][0] = 99
print(original)

print(shallow_copy)

[[99, 2, 3], [4, 5, 6]]
[[99, 2, 31, [4, 5, 6]]

Notice that modifying the nested list in the shallow copy also affects the original.

Deep Copy

A deep copy creates a new object and recursively copies all nested objects, ensuring that no
references to the original nested objects are retained.

How to Create a Deep Copy:
Use the copy.deepcopy() function from the copy module.

Example:

import copy

original = [[1, 2, 3], [4, 5, 6]]
deep_copy = copy.deepcopy(original)
deep_copy[0][0] = 99

print(original)
print(deep_copy)

[[1, 2, 31, [4, 5, 6]]
[[99, 2, 31, [4, 5, 6]]

Notice that modifying the nested list in the deep copy does not affect the original.

When to Use Shallow Copy vs Deep Copy

Use Case Shallow Copy Deep Copy

Object contains Use shallow copy (no Use deep copy (no difference

only immutable difference in behavior). in behavior).

elements

Object contains Use shallow copy if you want Use deep copy if you want

mutable nested changes to nested objects to changes to nested objects to

objects affect the original. not affect the original.

Performance Faster (less memory and Slower (more memory and
computation). computation due to recursive

copying).

Practical Examples

Example 1: Shallow Copy with a List of Lists

import copy

original = [[1, 2], [3, 4]]
shallow_copy = copy.copy(original)

shallow_copy[0][0] = 99
print(original)
print(shallow_copy)

[[99, 21, [3,]l
[[99, 21, [3, ul]

Example 2: Deep Copy with a List of Lists

import copy

original = [[1, 2], [3, 4]]
deep_copy = copy.deepcopy(original)

deep_copy[0][0] = 99
print(original)
print(deep_copy)

[[1, 2], [3, 4]]
[[99, 21, [3, ul]

Example 3: Shallow Copy with a Dictionary

import copy

original = {"a": [1, 2], "b": [3, dl}
shallow_copy = copy.copy(original)

shallow_copy["a"][0] = 99
print(original)
print(shallow_copy)

'a': [99, 21, 'b': [3, 41}
a

d
{'a': [99, 21, 'b': [3, 41}

Example 4: Deep Copy with a Dictionary

import copy

original = {"a": [1, 2], "b": [3, dl}
deep_copy = copy.deepcopy(original)

deep_copy["a"][0] = 99
print(original)
print(deep_copy)

{'a': [1, 21, 'b': [3, ul}
{'a': [99, 21, 'b': [3, ul}

Summary
Aspect Shallow Copy
Copies nested No (references are shared).
objects?
Performance Faster.
Use Case When nested objects are

immutable or shared references
are acceptable.

Deep Copy

Yes (recursively copies nested
objects).

Slower.

When nested objects are

mutable and independent copies
are needed.

22. Context Managers in Python

Context managers are a way to manage resources (e.g., files, database connections, locks)
in Python. They ensure that resources are properly acquired and released, even if an
exception occurs. The most common use of context managers is with the with statement.

Key Concepts

Resource Management:
Resources like files, network connections, or locks need to be properly
opened/acquired and closed/released.
Failing to release resources can lead to leaks, which can cause performance issues
or crashes.

Context Manager Protocol:
A context manager is an object that implements the __enter__ and __exit__
methods.
The __enter__ method is called when entering the with block.
The __exit__ method is called when exiting the with block, even if an exception
occurs.

The with Statement:
The with statement simplifies resource management by automatically calling the
__enter__ and __exit__ methods.

Using Context Managers

The most common example of a context manager is working with files. Instead of manually
opening and closing a file, you can use the with statement to ensure the file is properly
closed.

Example: File Handling with with

= ("example.txt", "w")
.write("Hello, World!")
.close()

with ("example.txt", "w") as

.write("Hello, World!")

The with statement ensures that the file is closed, even if an exception occurs within
the block.

Creating Custom Context Managers

You can create your own context managers by defining a class with __enter__ and
__exit__ methods.

Example: Custom Context Manager

class :
def (self):
print("Entering the context")
return self
def (self, exc_type, exc_value, traceback):

print("Exiting the context")
if exc_type is not None:
print(f"An exception occurred: {exc_value}")

return False

with MyContextManager() as cm:
print("Inside the context")

Entering the context
Inside the context
Exiting the context

If an exception occurs, the __exit__ method is still called, and you can handle the

exception within it.

Using contextlib for Simpler Context Managers

The contextlib module provides utilities for creating context managers without defining a
class. The most common utility is contextlib.contextmanager , which allows you to create

a context manager using a generator function.

Example: Context Manager with contextlib

from contextlib import contextmanager

@contextmanager
def Q:
print("Entering the context")
try:
yield

except Exception as e:

print(f"An exception occurred: {e}")
finally:

print("Exiting the context")

with my_context_manager():
print("Inside the context")

Entering the context
Inside the context
Exiting the context

Common Use Cases for Context Managers

File Handling:
Automatically close files after reading or writing.

with ("example.txt", "r") as
content = .read()

Database Connections:
Automatically close database connections.

with db_connection() as conn:
cursor = conn.cursor()
cursor.execute("SELECT * FROM table")

Locks in Multithreading:
Automatically release locks.

with threading.Lock():

pass

Temporary Changes:
Temporarily change the state (e.g., redirecting stdout).

from contextlib import redirect_stdout
import io

f = i0.StringI0()
with redirect_stdout(f):

print("This goes to the buffer")
print(f.getvalue())

This goes to the buffer

Advantages of Context Managers

Resource Safety: Ensures resources are properly released, even if an exception
occCurs.

Readability: Makes code cleaner and easier to understand.
Reusability: Context managers can be reused across different parts of the code.

Summary
Aspect Details
Purpose Manage resources (e.g., files, locks) safely and efficiently.
Syntax with context_manager as variable:
Built-in Context open() , threading.Lock(), contextlib.redirect_stdout(),
Managers etc.
Custom Context Implement __enter__ and __exit__ methods or use
Managers contextlib.contextmanager .

Exception Handling The __exit__ method can handle exceptions raised in the
with block.

